Refine search
Results 641-650 of 7,290
Assessment on the source of geochemical anomalies in the sediments of the Changjiang river (China), using a modified enrichment factor based on multivariate statistical analyses Full text
2022
Dominech, Salvatore | Albanese, Stefano | Guarino, Annalise | Yang, Shouye
Rivers can be sinks for potential toxic elements (PTEs) inputted in their systems by both natural and anthropic processes. Many indices have been proposed to assess the contamination degree of sediments and the environmental conditions of surficial water bodies. Above all, enrichment factor (EF) is the most used tool, but also it is the most debated for its limitations. The need for a reference element and for a background/baseline composition makes the EF method dependent on the researcher's expertise, implying that its repeatability may not be granted. Starting from the awareness that geochemical processes, bringing to compositional changes in the environmental matrices, involve multiple elements rather than individual variables, we developed a modified EF (mEF) based on the use of elemental associations. Different multivariate statistical methods (i.e. Robust Principal Component Analysis and Fuzzy Clustering), in a compositional data analysis (CoDA) perspective, were used to set all the terms of the mEF. The mEF was applied to 101 sediment samples collected from a 2 m-long core, covering a sedimentation period of about 150 years (1850–2007), located in the lower Changjiang River (China). The method resulted effective in recognizing most of the signals proceeding from the main natural and anthropogenic events which affected the lower river basin in the considered timespan. The largest geochemical variations recorded fit well the flooding events occurred; besides, the effects produced on the system by the recent socio-economic development (following the end of the civil war in 1949 and the beginning of economic reforms in 1978) and the start-up of the Three Gorges Dam (the world's largest power station since 2012) were also intercepted. The proposed method represents a step forward to enhance the effectiveness of the EF in discriminating geochemical anomalies that may be significant to assess the human historical impact on the environment.
Show more [+] Less [-]Effects of macrophytes and environmental factors on sediment denitrification in a subtropical reservoir Full text
2022
Bu, Hongmei | Fry, Brian | Burford, Michele A.
Sediment denitrification plays an important role in nitrogen removal in aquatic systems. However, the importance in nitrogen removal in reservoirs, with a focus on seasonal differences of conditions such as macrophyte beds and environmental factors, is less well understood. This study examined sediment denitrification rate (Dₙ), and their potential controlling factors were determined in both macrophyte beds and deeper waters in the subtropical reservoir. The mean Dₙ in the reservoir annually was 18.0 ± 6.3 (mean ± S.E.) mmol N m⁻² d⁻¹, with significant seasonal variation (p < 0.01), i.e. 43.2 ± 12.8, 6.7 ± 6.3, and 4.0 ± 2.2 mmol N m⁻² d⁻¹ in winter, spring and summer respectively. There were no statistical differences in Dₙ between shallow waters with macrophyte beds and deeper waters without macrophyte beds, although macrophyte beds had higher denitrification rates in summer. The Dₙ rates were significantly correlated with temperature, conductivity, dissolved oxygen, pH, nitrate-nitrogen concentration (NO₃⁻-N) (p < 0.01) and turbidity (p < 0.05). Linear regression models demonstrated environmental variables explained between 36% and 76% of the variation in Dₙ. The correlation with NO₃⁻-N concentrations suggests that it may be a limited factor for Dₙ. Annual nitrogen removal of the reservoir by a combination of sediment and water denitrification was totally estimated to be 370 t N with an annual removal efficiency of approximately 11%. Nitrogen removal was much higher in winter than other seasons, with about 305 t N removed, accounting for 12% of the total nitrogen inputs. Therefore, denitrification appears to play a minor role throughout much of the year, but in winter months when nitrate accumulates, it may play a more major role.
Show more [+] Less [-]Effects of respirators to reduce fine particulate matter exposures on blood pressure and heart rate variability: A systematic review and meta-analysis Full text
2022
Faridi, Sasan | Brook, Robert D. | Yousefian, Fatemeh | Hassanvand, Mohammad Sadegh | Nodehi, Ramin Nabizadeh | Shamsipour, Mansour | Rajagopalan, Sanjay | Naddafi, Kazem
Particulate-filtering respirators (PFRs) have been recommended as a practical personal-level intervention to protect individuals from the health effects of particulate matter exposure. However, the cardiovascular benefits of PFRs including improvements in key surrogate endpoints remain unclear. We performed a systematic review and meta-analysis of randomized studies (wearing versus not wearing PFRs) reporting the effects on blood pressure (BP) and heart rate variability (HRV). The search was performed on January 3, 2022 to identify published papers until this date. We queried three English databases, including PubMed, Web of Science Core Collection and Scopus. Of 527 articles identified, eight trials enrolling 312 participants (mean age ± standard deviation: 36 ± 19.8; 132 female) met our inclusion criteria for analyses. Study participants wore PFRs from 2 to 48 h during intervention periods. Wearing PFRs was associated with a non-significant pooled mean difference of −0.78 mmHg (95% confidence interval [CI]: −2.06, 0.50) and −0.49 mmHg (95%CI: −1.37, 0.38) in systolic and diastolic BP (SBP and DBP). There was a marginally significant reduction of mean arterial pressure (MAP) by nearly 1.1 mmHg (95%CI: −2.13, 0.01). The use of PFRs was associated with a significant increase of 38.92 ms² (95%CI: 1.07, 76.77) in pooled mean high frequency (power in the high frequency band (0.15–0.4 Hz)) and a reduction in the low (power in the low frequency band (0.04–0.15Hz))-to-high frequency ratio [−0.14 (95%CI: −0.27, 0.00)]. Other HRV indices were not significantly changed. Our meta-analysis demonstrates modest or non-significant improvements in BP and many HRV parameters from wearing PFRs over brief periods. However, these findings are limited by the small number of trials as well as variations in experimental designs and durations. Given the mounting global public health threat posed by air pollution, larger-scale trials are warranted to elucidate more conclusively the potential health benefits of PFRs.
Show more [+] Less [-]Sources of ammonium enriched in groundwater in the central Yangtze River Basin: Anthropogenic or geogenic? Full text
2022
Liang, Ying | Ma, Rui | Nghiem, Athena | Xu, Jie | Tang, Liansong | Wei, Wenhao | Prommer, Henning | Gan, Yiqun
The occurrence of excessive ammonium in groundwater threatens human and aquatic ecosystem health across many places worldwide. As the fate of ammonium in groundwater systems is often affected by a complex mixture of transport and biogeochemical transformation processes, identifying the sources of groundwater ammonium is an important prerequisite for planning effective mitigation strategies. Elevated ammonium was found in both a shallow and an underlying deep groundwater system in an alluvial aquifer system beneath an agricultural area in the central Yangtze River Basin, China. In this study we develop and apply a novel, indirect approach, which couples the random forest classification (RFC) of machine learning method and fluorescence excitation-emission matrices with parallel factor analysis (EEM-PARAFAC), to distinguish multiple sources of ammonium in a multi-layer aquifer. EEM-PARAFAC was applied to provide insights into potential ammonium sources as well as the carbon and nitrogen cycling processes affecting ammonium fate. Specifically, RFC was used to unravel the different key factors controlling the high levels of ammonium prevailing in the shallow and deep aquifer sections, respectively. Our results reveal that high concentrations of ammonium in the shallow groundwater system primarily originate from anthropogenic sources, before being modulated by intensive microbially mediated nitrogen transformation processes such as nitrification, denitrification and dissimilatory nitrate reduction to ammonium (DNRA). By contrast, the linkage between high concentrations of ammonium and decomposition of soil organic matter, which ubiquitously contained nitrogen, suggested that mineralization of soil organic nitrogen compounds is the primary mechanism for the enrichment of ammonium in deeper groundwaters.
Show more [+] Less [-]Bacterial colonisation of plastic in the Rockall Trough, North-East Atlantic: An improved understanding of the deep-sea plastisphere Full text
2022
Kelly, Max R. | Whitworth, Paul | Jamieson, Alan | Burgess, J Grant
Plastic pollution has now been found within multiple ecosystems across the globe. Characterisation of microbial assemblages associated with marine plastic, or the so-called ‘plastisphere’, has focused predominantly on plastic in the epipelagic zone. Whether this community includes taxa that are consistently enriched on plastic compared to surrounding non plastic surfaces is unresolved, as are the ecological implications. The deep sea is likely a final sink for most of the plastic entering the ocean, yet there is limited information on microbial colonisation of plastic at depth. The aim of this study was to investigate deep-sea microbial communities associated with polystyrene (PS) and polyurethane (PU) with Bath stone used as a control. The substrates (n = 15) were deployed in the Rockall Trough (Atlantic), and recovered 420 days later from a depth of 1796 m. To characterise the bacterial communities, 16S rRNA genes were sequenced using the Illumina MiSeq platform. A dominant core microbiome (taxa shared across all substrates) comprised 8% of total ASVs (amplicon sequence variant) and accounted for 92% of the total community reads. This suggests that many commonly reported members of the plastisphere are simply opportunistic which freely colonise any hard surface. Transiently associated species consisted of approximately 7% of the total community. Thirty genera were enriched on plastic (P < 0.05), representing 1% of the total community. The discovery of novel deep-sea enriched taxa included Aurantivirga, Algivirga, IheB3-7, Spirosoma, HTCC5015, Ekhidna and Calorithrix on PS and Candidatus Obscuribacter, Haloferula, Marine Methylotrophic Group 3, Aliivibrio, Tibeticola and Dethiosulfatarculus on PU. This small fraction of the microbiome include taxa with unique metabolic abilities and show how bacterial communities can be shaped by plastic pollution at depth. This study outlines a novel approach in categorising the plastisphere to elucidate the ecological implications of enriched taxa that show an affinity for colonising plastic.
Show more [+] Less [-]Ozone pollution in the plate and logistics capital of China: Insight into the formation, source apportionment, and regional transport Full text
2022
Wang, Gang | Zhu, Zhongyi | Liu, Zhonglin | Liu, Xiaoyu | Kong, Fanhua | Nie, Liman | Gao, Wenkang | Zhao, Na | Lang, Jianlei
As the logistics and plate capital of China, the sources and regional transport of O₃ in Linyi are different from those in other cities because of the significant differences in industrial structure and geographical location. Twenty-five ozone pollution episodes (OPEs, 52 days) were identified in 2021, with a daily maximum 8-h moving average O₃ concentration (O₃₋MDA₈) of 184.5 ± 22.5 μg/m³. Oxygenated volatile organic compounds (OVOCs) and aromatics were the dominant contributors to ozone formation potential (OFP), with contributions of approximately 23.5–52.7% and 20.0–40.8%, respectively, followed by alkenes, alkanes, and alkynes. Formaldehyde, an OVOC with high concentrations emitted from the plate industry and vehicles, contributed the most to OFP (22.7 ± 5.5%), although formaldehyde concentrations only accounted for 9.4 ± 2.7% of the total non-methane hydrocarbon (NMHC) concentrations. The source apportionment results indicated that the plate industry was the dominant O₃ contributor (27.0%), followed by other sources (21.6%), vehicle-related sources (18.0%), solvent use (16.9%), liquefied petroleum gas (LPG)/natural gas (NG) (8.8%), and combustion sources (7.7%). Therefore, there is an urgent need to control the plating industry in Linyi to mitigate O₃ pollution. The backward trajectory, potential source contribution function (PSCF), and concentration weighted trajectory (CWT) models were used to identify the air mass pathways and potential source areas of air pollutants during the OPEs. O₃ pollution was predominantly affected by air masses that originated from eastern and local regions, while trajectories from the south contained the highest O₃ concentrations (207.0 μg/m³). The potential source area was from east and south Linyi during the OPEs. Therefore, it is critical to implement regional joint prevention and control measures to lower O₃ concentrations.
Show more [+] Less [-]First record of microplastic occurence at the commercial fish from Orontes River Full text
2022
Kiliç, Ece | Yücel, Nebil | Mübarek Şahutoğlu, Seycan
Freshwater environments are more sensitive to anthropogenic influences and usually contain higher concentrations of pollutants than marine environments. Microplastic pollution causes additional stress on freshwater animals; yet, studies evaluating the microplastic occurrence in freshwater biota are still limited. In this study, microplastic occurrence in the gastrointestinal tracts (GIT) and gill of commercial fish species (Prussian carp Carassius gibelio (Bloch, 1782); Abu mullet Planiliza abu (Heckel, 1843); Common carp Cyprinus carpio Linnaeus, 1758; European ell Anguilla Anguilla (Linnaeus, 1758); North African catfish Clarias gariepinus (Burchell, 1822); Goldfish Carassius auratus (Linnaeus, 1758) were reported from Orontes River. MPs abundance in the GIT and gill of six species were found as 5.1 ± 2 MPs fish⁻¹ and 4.4 ± 2 MPs fish⁻¹ with an occurrence of 95% and 74%, respectively. The majority of extracted microplastics were fiber, black and less than 1000 μm in size. FTIR analysis determined the main polymer types as polyester (50%), high-density polyethylene (HDPE) (10%), polypropylene (PP) (8%) and polyethylene terephthalate (PET) (5%). High MPs abundance and frequency of occurence indicate the exposure of microplastic pollution in freshwater biota which could threat the health of both individuals and consumers. Results obtained in this study will increase the acknowledgement of MPs pollution in the Orontes River. Also, this study will provide data to the administrators to set up necessary legislations in freshwater ecosystems.
Show more [+] Less [-]Behavior and toxic effects of Pb in a waterfowl model with oral exposure to Pb shots: Investigating Pb exposure in wild birds Full text
2022
Sato, Hiroshi | Ishii, Chihiro | Nakayama, Shouta M.M. | Ichise, Takahiro | Saitō, Keisuke | Watanabe, Yukiko | Ogasawara, Kohei | Torimoto, Ryota | Kobayashi, Atsushi | Kimura, Kei | Johnson, Yuki N. (Yuki Nakamura) | Yamagishi, Junya | Ikenaka, Yoshinori | Ishizuka, Mayumi
Among wild birds, lead (Pb) exposure caused by ingestion of ammunition is a worldwide problem. We aimed to reveal the behavior and toxic effect of Pb caused by ingesting Pb shots in waterfowl. Four male, eight-week old Muscovy ducks (Cairina moschata) were given three Pb shots (approximately 240 mg in total) orally and then fed for 29 days after exposure, simulating a low-dose Pb exposure in wild waterfowl. During the breeding period, blood samples were collected 10 times, and fecal samples every day. Additionally, 22 fresh tissue and 6 bone samples were obtained from each duck through the dissection. Although there were no gross abnormalities, the maximum blood Pb concentration of each duck ranged from 0.6 to 3.7 mg/L, reaching a threshold concentration indicative of clinical symptoms (>0.5 mg/L). δ-aminolevulinic acid dehydratase declined one day after exposure and remained low throughout the feeding period. Hematocrit also tended to decrease, indicating signs of anemia. The highest Pb accumulation was observed in the bones, followed by the kidneys, intestinal tracts, and liver. High Pb accumulation in the bones, which are known to have a long Pb half-life, suggested that Pb would remain in the body and possibly affect bird health beyond 28 days after exposure. Gene expression analysis showed a significant increase in the expression of the toll-like receptor-3 gene, which is involved in virus discrimination in the liver, suggesting a disruption of the immune system. Microbiota analyses showed a correlation between the blood Pb concentration and the abundances of Lachnospiraceae and Ruminococcaceae, suggesting that Pb affects lipid metabolism. These results provide fundamental data on Pb exposure in wild birds and a new perspective on the damage such exposure causes.
Show more [+] Less [-]Effect of photooxidation on size distribution, light absorption, and molecular compositions of smoke particles from rice straw combustion Full text
2022
Zhao, Ranran | Zhang, Qixing | Xu, Xuezhe | Wang, Wenjia | Zhao, Weixiong | Zhang, Weijun | Zhang, Yongming
Organic aerosol (OA) emitted from biomass burning (BB) impacts air quality and global radiation balance. However, the comprehensive characterization of OA remains poorly understood because of the complex evolutionary behavior of OA in atmospheric processes. In this work, smoke particles were generated from rice straw combustion. The effect of OH radicals photooxidation on size distribution, light absorption, and molecular compositions of smoke particles was systematically investigated. The results showed that the median diameters of smoke particles increased by a factor of approximately 1.2 after photooxidation. In the particle compositions, although both non-polar fractions (n-hexane-soluble organic carbon, HSOC) and polar fractions (water-soluble organic carbon, WSOC) underwent photobleaching after aging, the photobleaching properties of HSOC (1.87–2.19) was always higher than that of WSOC (1.52–1.33). Besides, the light-absorbing properties of HSOC were higher than that of WSOC, showing a factor of approximately 1.75 times for mass absorption efficiency at 365 nm (MAE₃₆₅). Consequently, the simple forcing efficiency (SFE) caused by absorption showed that HSOC has higher radiation effects than WSOC. After photooxidation, the concentration of 16 PAHs in HSOC fractions significantly decreased by 15.3%–72.5%. In WSOC fractions, the content of CHO, CHONS, and CHOS compounds decreased slightly, while the content of CHON compounds increased. Meantime, the variations in molecular properties supported the decrease in light absorption of WSOC fractions. These results reveal the aging behavior of smoke particles, then stress the importance of non-polar organic fractions in particles, providing new insights into understanding the atmospheric pollution caused by BB smoke particles.
Show more [+] Less [-]Polystyrene nanoplastic contamination mixed with polycyclic aromatic hydrocarbons: Alleviation on gas exchange, water management, chlorophyll fluorescence and antioxidant capacity in wheat Full text
2022
Arikan, Busra | Ozfidan-Konakci, Ceyda | Yildiztugay, Evren | Turan, Metin | Cavusoglu, Halit
Polycyclic aromatic hydrocarbons (PAHs) constitute a significant environmental pollution group that reaches toxic levels with anthropogenic activities. The adverse effects of nanoplastics accumulating in ecosystems with the degradation of plastic wastes are also a growing concern. Previous studies have generally focused on the impact of single PAH or plastic fragments exposure on plants. However, it is well recognized that these contaminants co-exist at varying rates in agricultural soil and water resources. Therefore, it is critical to elucidate the phytotoxicity and interaction mechanisms of mixed pollutants. The current study was designed to comparatively investigate the single and combined effects of anthracene (ANT, 100 mg L⁻¹), fluorene (FLU, 100 mg L⁻¹) and polystyrene nanoplastics (PS, 100 mg L⁻¹) contaminations in wheat. Plants exposed to single ANT, FLU and PS treatments demonstrated decline in growth, water content, high stomatal limitations and oxidative damage. The effect of ANT + FLU on these parameters was more detrimental. In addition, ANT and/or FLU treatments significantly suppressed photosynthetic capacity as determined by carbon assimilation rate (A) and chlorophyll a fluorescence transient. The antioxidant system was not fully activated (decreased superoxide dismutase, peroxidase and glutathione reductase) under ANT + FLU, then hydrogen peroxide (H₂O₂) content (by 2.7-fold) and thiobarbituric acid reactive substances (TBARS) (by 2.8-fold) increased. Interestingly, ANT + PS and FLU + PS improved the growth, water relations and gas exchange parameters. The presence of nanoplastics recovered the adverse effects of ANT and FLU on growth by protecting the photosynthetic photochemistry and reducing oxidative stress. PAH plus PS reduced the ANT and FLU accumulation in wheat leaves. In parallel, the increased antioxidant system, regeneration of ascorbate, glutathione and glutathione redox status observed under ANT + PS and FLU + PS. These findings will provide an information about the phytotoxicity mechanisms of mixed pollutants in the environment.
Show more [+] Less [-]