Refine search
Results 651-660 of 762
Environmental exposure of pharmaceuticals and musk fragrances in the Somes River before and after upgrading the municipal wastewater treatment plant Cluj-Napoca, Romania
2009
Moldovan, Zaharie | Chira, Romeo | Alder, Alfredo C
Background, aim, and scope Pharmaceutically active substances are a class of emerging contaminants, which has led to increasing concern about potential environmental risks. After excretion, substantial amounts of unchanged pharmaceuticals and their metabolites are discharged into domestic wastewaters. The absence of data on the environmental exposure in Eastern Europe is significant, since use patterns and volumes differ from country to country. In Romania, the majority of wastewater, from highly populated cities and industrial complex zones, is still discharged into surface waters without proper treatment or after inefficient treatment. In respect to this, it is important to determine the environmental occurrence and behavior of pharmaceuticals and personal care products (PPCPs) in wastewaters and surface waters. The objective of the present study was to investigate the occurrence of selected PPCPs during the transport in the Somes River by mass flow analysis before and after upgrading a municipal wastewater treatment plant (WWTP) in Cluj-Napoca, which serves 350,000 inhabitants and is the largest plant discharging into the Somes River. The concentrations of PPCPs at Cluj-Napoca can be correlated with the high population and a high number of hospitals located in the catchment area leading to higher mass flows. The results of this study are expected to provide information, with respect to the Romanian conditions, for environmental scientists, WWTP operators, and legal authorities. The data should support the improvement of existing WWTPs and implementation of new ones where necessary and, therefore, minimize the input of contaminants into ambient waters. Materials and methods The PPCPs were selected on the basis of consumption at the regional scale, reported aquatic toxicity, and the suitability of the gas chromatography/mass spectrometry (GC/MS) method for the determination of the compounds at trace levels. The studied PPCPs, caffeine (stimulant), carbamazepine (antiepileptic), pentoxifylline (anticoagulant), cyclophosphamide (cytostatic), ibuprofen (analgesic), and galaxolide (musk fragrance), were determined in samples of the Somes River. The analytes were enriched by solid-phase extraction and subsequently determined by GC/MS. Caffeine, pentoxifylline, and galaxolide were determined underivatized, whereas the acidic pharmaceuticals carbamazepine, cyclophosphamide, and ibuprofen were determined after derivatization with N-methyl-N-(trimethylsilyl)-trifluoroacetamide. Results and discussion The concentrations in the Somes River varied from below 10 ng/L up to 10 μg/L. A substantial decrease of the exposure in the Somes River could be observed due to the upgrade of the municipal WWTP in Cluj-Napoca. The loads in the river stretch between Cluj-Napoca and Dej (Somes Mic) varied strongly: caffeine (400-2,000 g/day), carbamazepine (78-213 g/day), galaxolide (140-684 g/day), ibuprofen (84-108 g/day). After the upgrade of the WWTP Cluj-Napoca, the concentrations in the Somes of caffeine, pentoxifylline, cyclophosphamide, galaxolide, and tonalide were significantly reduced (over 75%). One might be cautious comparing both studies because the relative efficiency of the WWTP's removal of PPCP was not evaluated. However, the significantly lower concentrations of most compounds after the upgrade of the WWTP Cluj-Napoca allow one to infer that the technical measures at the source substantially reduced inputs of contaminants to the receiving river. Dej loads of the poorly biodegradable substance carbamazepine increased by a factor of 2-3 as a result of wastewater discharges into the river. The disproportionate increase in caffeine loads by a factor of 4 below Cluj-Napoca indicates inputs of untreated wastewater from the Somes Mare due to the discharge of untreated wastewater derived from Bistrita, Nasaud, and Beclean (115,000 inhabitants). Conclusions The relative contribution of treated and untreated wastewater in surface water might be assessed by measuring chemical markers. Recalcitrant pharmaceuticals like carbamazepine are suitable as chemical markers for estimating the relative contribution of wastewater in surface water. The easily degradable caffeine might be a good indicator for raw sewage and hardly treated wastewaters. Recommendations and perspectives Municipal WWTPs have the potential of a significant contribution in reducing the load of contaminants to ambient waters. The efficiency of the wastewater treatment in Cluj-Napoca improved considerably after the upgrade of the WWTP. Therefore, it is crucial that several WWTPs must be implemented or improved in the Somes Valley Watershed in order to reduce the discharge of contaminants in the Somes River from these point sources.
Show more [+] Less [-]Using multiple indices to evaluate scenarios for the remediation of contaminated land: the Porto Marghera (Venice, Italy) contaminated site
2009
Critto, Andrea | Agostini, Paola
Background, aim, and scope The management of contaminated sites requires the investigation of different involved aspects (from socioeconomic to risk and technological issues) and the presentation of useful and condensed information to decision makers. For this purpose, indices are more and more recognized as effective and valuable tools. This paper presents specific indices created within the DEcision Support sYstem for REhabilitation of contaminated sites (DESYRE). Materials and methods DESYRE is a software which aids decision making for the rehabilitation of a large contaminated site (i.e., megasite) by the creation and comparison of different rehabilitation alternatives. The software is composed of six modules, each dealing with a specific aspect of the remediation process, ending with the decision module. In this module, scenarios (i.e., suitable solutions for the rehabilitation of the contaminated site including selected land use, socioeconomic benefits, remediation costs, time span, environmental impacts, technology set/s, and residual risk) are created and evaluated by means of suitable indices. Nine indices cover the socioeconomic, risk, technological, cost, time, and environmental impact aspects. Mathematical algorithms are used to calculate these indices by taking into account data collected during the analytical steps of the DESYRE system and elaborated through the support of the spatial analysis, which is embedded in the system. Results The case study of Porto Marghera, Venice, Italy is presented in order to document the effectiveness of developed indices in evaluating management solutions and presenting options to decision makers. For the purpose of this study, three different scenarios for the remediation of a part of the site of Porto Marghera (approximately 530 ha) are developed and compared. The three scenarios consider the industrial land use and deal with the contamination in soil caused by inorganic and organic compounds. The scenarios mainly differ for the number of the included remediation technologies and for the spatial distribution of the technologies on the considered area. Discussion Indices results allow the user to more easily evaluate the advantages and limits of each scenario in order to select the most appropriate one. For instance, the risk indices allow the user to identify scenarios with good performance in reducing the extension of risk areas and the risk magnitude. Equally, the technological indices support the achievement of efficient remedial solutions characterized by a limited number of technologies, applied to extended areas and with high performance. The environmental impact index allows users to estimate the wider effects on the environment of the selected solutions, while the socioeconomic index is the result of social and economic investigations of the regional and local conditions, which ends with the identification of the best land use (e.g., the industrial one for the Porto Marghera area). Conclusions The proposed nine DESYRE indices provide more complete information to investigate suitable management solutions. DESYRE indices facilitate the definition of a consensus among stakeholders and the achievement of a widely shared solution for contaminated site management, even at larger sites, such as Porto Marghera. Recommendations and perspectives Further improvements to the system may be adopted, e.g., the possibility to aggregate results of the different assessments into one synthetic index per scenario or the inclusion of a Group Decision Making procedure.
Show more [+] Less [-]Occurrence of benzotriazoles in the rivers Main, Hengstbach, and Hegbach (Germany)
2009
Kiss, Aliz | Fries, Elke
Background, aim, and scope Benzotriazoles (BT) as 1H-benzotriazole (1H-BT), 5-methyl-1H-benzotriazole (5Me-BT), and 4-methyl-1H-benzotriazole (4Me-BT) are frequently used as corrosion inhibitors in dish washer detergents, aircraft de-icing/anti-icing fluids (ADAF), automotive antifreeze formulations, brake fluids, fluids for industrial cooling systems, metal-cutting fluids, and in solid cooling lubricants. Discharge of treated municipal waste water and controlled over-runs of combined waste water sewers are potential point sources for BT in rivers. The aim of this monitoring study was to yield an overview on exposure concentrations and loads of BT in the German rivers Main, Hengstbach, and Hegbach. Materials and methods Concentrations of 1H-BT, 5Me-BT, and 4Me-BT were determined in grab samples collected from different sampling points in the rivers Main, Hengstbach, and Hegbach at four different sampling times. Main and Hengstbach rivers were sampled close to Frankfurt International Airport. Both rivers receive domestic waste water effluents. BT were extracted from 2.5 L of river water by solid phase extraction using Bond Elut ppl cartridges (200 mg/3 mL). The extracts were analyzed by gas chromatography/mass spectrometry in full scan mode. Mass flows of BT were calculated by concentrations multiplied by mean daily river flow rates. Median concentrations and mass flows were compared for different rivers. Mass flows were also compared for selected sampling points at different sampling times. Results 1H-BT, 5Me-BT, and 4Me-BT were detected in Main and Hengstbach rivers. 1H-BT and 5Me-BT were also detected in Hegbach River. Concentrations ranged from 38 to 1,474 ng/L for 1H-BT, from 25 to 281 ng/L for 5Me-BT, and from 25 to 952 ng/L for 4Me-BT. Median concentrations of 1H-BT, 5Me-BT, and 4Me-BT were lower in Main than in Hengstbach River. Much higher median mass flows of all BT were calculated for Main than for Hengstbach River. At sampling points P9 (Main) and P5 (Hengstbach) concentrations of 4Me-BT and 5Me-BT increased from March 29, 2008 to May 1, 2008 to June 22, 2008 whereas daily mean river flow rate decreased simultaneously. However, concentration of 1H-BT in Main and Hengstbach River increased from March 29, 2008 to May 1, 2008 and decreased again on June 22, 2008. In the Main River, lowest and highest mass flows for all BT were calculated on June 22, 2008 and May 1, 2008, respectively. In the Hengstbach River lowest and highest mass flows for 1H-BT and 4Me-BT were also calculated on June 22, 2008 and May 1, 2008, respectively. However, mass flows of 5Me-BT in Hengstbach River were rather similar at all three sampling times. In all grab samples, 1H-BT was more abundant than 5Me-BT and 4Me-BT in Main and Hengstbach River, except on June 22, 2008. Ratios of 1H-BT/(5Me-BT + 4Me-BT) determined on March 15, 2008, March 29, 2008, and May 1, 2008 varied between 1.6 and 9.0 with a median value of 1.9 (n = 9) whereas on June 22, 2008 the ratios varied between 0.4 and 0.7 with a median value of 0.6 (n = 5). Discussion Due to the absence of waste water effluents in the Hegbach River, other input sources as controlled over-runs of combined waste water sewers and/or atmospheric deposition of BT must be regarded as possible input sources. Exfiltration of ground water containing BT to Hegbach River must be also regarded, especially when considering the high polarity of BT. Median concentrations of BT in Main River were much lower than in Hengstbach River due to dilution. However, median mass flows were higher in the Main River than in the Hengstbach River. Higher mass flows could be attributed to higher source strengths and/or numerous emissions sources in the Main River. Mass flows determined on June 22, 2008 in Main and Hengstbach rivers probably reflect emissions of BT only from dishwasher detergents since de-icing operations were unlikely at that time. Emissions of BT from dish washer detergents are rather constant without any seasonal variations. Assuming the absence of additional input sources and constant in-stream removal processes, mass flows calculated for all other sampling times must be nearly similar to mass flows for June 22, 2009 as it was only observed for 5Me-BT in Hengstbach River. The higher mass flows for 1H-BT and 4Me-BT in March and May in both rivers could be an indication for temporal variations of emission pattern and/or of in-stream removal processes. 1H-BT/(4Me-BT + 5Me-BT) ratios above one in March and May and below one in June could be also an indication for temporal variations of input and/or removal processes. Conclusions 1H-BT, 5Me-BT, and 4Me-BT used as corrosion inhibitors in many applications were detected in the rivers Main, Hengstbach, and Hegbach with relative high temporal and spatial concentration variations. Dilution is a dominant factor that influences exposure concentrations of BT in the studied rivers. We conclude that, especially in smaller rivers (as Hengstbach River), the hydrological situation has to be regarded when predicting exposure concentrations of BT. Characteristic emission strength and in-stream removal processes must be known to relate loads of BT in river water to different sources. The ratio of 1H-BT/(4Me-BT + 5Me-BT) could be possibly used for source apportionment. Recommendations and perspectives Time series analyses of BT in composite river water samples collected at two river sites of the Hengstbach/Schwarzbach catchment area, without any waste water effluents in between, are recommended to study in-stream removal of BT. In addition, exposure modeling is recommended of BT, regarding all input sources and in-stream removal processes to predict exposure concentrations of BT in rivers. In order to calibrate and validate the model, additional monitoring data are required.
Show more [+] Less [-]Chemical transport models
2009
Mihailovic, Dragutin T | Alapaty, Kiran | Podrascanin, Zorica
Background, aim, and scope Improving the parameterization of processes in the atmospheric boundary layer (ABL) and surface layer, in air quality and chemical transport models. To do so, an asymmetrical, convective, non-local scheme, with varying upward mixing rates is combined with the non-local, turbulent, kinetic energy scheme for vertical diffusion (COM). For designing it, a function depending on the dimensionless height to the power four in the ABL is suggested, which is empirically derived. Also, we suggested a new method for calculating the in-canopy resistance for dry deposition over a vegetated surface. Materials and methods The upward mixing rate forming the surface layer is parameterized using the sensible heat flux and the friction and convective velocities. Upward mixing rates varying with height are scaled with an amount of turbulent kinetic energy in layer, while the downward mixing rates are derived from mass conservation. The vertical eddy diffusivity is parameterized using the mean turbulent velocity scale that is obtained by the vertical integration within the ABL. In-canopy resistance is calculated by integration of inverse turbulent transfer coefficient inside the canopy from the effective ground roughness length to the canopy source height and, further, from its the canopy height. Results This combination of schemes provides a less rapid mass transport out of surface layer into other layers, during convective and non-convective periods, than other local and non-local schemes parameterizing mixing processes in the ABL. The suggested method for calculating the in-canopy resistance for calculating the dry deposition over a vegetated surface differs remarkably from the commonly used one, particularly over forest vegetation. Discussion In this paper, we studied the performance of a non-local, turbulent, kinetic energy scheme for vertical diffusion combined with a non-local, convective mixing scheme with varying upward mixing in the atmospheric boundary layer (COM) and its impact on the concentration of pollutants calculated with chemical and air-quality models. In addition, this scheme was also compared with a commonly used, local, eddy-diffusivity scheme. Simulated concentrations of NO₂ by the COM scheme and new parameterization of the in-canopy resistance are closer to the observations when compared to those obtained from using the local eddy-diffusivity scheme. Conclusions Concentrations calculated with the COM scheme and new parameterization of in-canopy resistance, are in general higher and closer to the observations than those obtained by the local, eddy-diffusivity scheme (on the order of 15-22%). Recommendations and perspectives To examine the performance of the scheme, simulated and measured concentrations of a pollutant (NO₂) were compared for the years 1999 and 2002. The comparison was made for the entire domain used in simulations performed by the chemical European Monitoring and Evaluation Program Unified model (version UNI-ACID, rv2.0) where schemes were incorporated.
Show more [+] Less [-]Effects of triclosan on zebrafish early-life stages and adults
2009
Oliveira, Rhaul | Domingues, Inês | Grisolia, Cesar Koppe | Soares, Amadeu M. V. M.
Background, aim and scope The biocide triclosan (TCS) is commonly used in personal care, acrylic, plastic, and textiles products. TCS has been detected in surface water in several countries, and its ecological impact is largely unknown. In this work, the toxicity of TCS in zebrafish (Danio rerio), embryos and adults was studied. Several lethal and sub-lethal endpoints were analysed in organisms exposed to TCS such as mortality, embryo development and behaviour, hatching, micronuclei and biochemical markers (cholinesterase (ChE), glutathione S-transferase (GST) and lactate dehydrogenase (LDH)). Materials and methods Embryo/larvae assay followed the OECD guideline on Fish Embryo Toxicity Test. Embryos were exposed at nominal concentrations of 0.1, 0.3, 0.5, 0.7 and 0.9 mg/l of TCS for 6 days and were inspected daily with the help of a stereomicroscopy for mortality, developmental parameters (otolith formation, eye and body pigmentation, somite formation, heart beat, tail circulation, detachment of the tail-bud from the yolk sac) and hatching. A similar test was run to obtain larvae for ChE, GST and LDH analysis. The adult test followed the OECD Guideline TG 203 in semi-static conditions. Adult zebrafish of similar length and age were exposed to nominal concentrations of 0.1, 0.2, 0.3, 0.4 and 0.5 mg/l of TCS for 96 h and were inspected daily for mortality and behaviour alterations. A second test was run to obtain organs for biomarkers analysis: Heads, muscles and gills were isolated and snap-frozen in eppendorfs and used for ChE, LDH and GST determinations, respectively. Adult zebrafish testing also comprised a third test for micronucleus analysis in which the nominal concentrations of 0, 0.175 and 0.350 mg/l were used. Peripheral blood was obtained by cardiac puncture and used for the analysis. Results TCS showed acute toxicity for embryo/larvae (96 h LC₅₀ = 0.42 mg/l) and delayed hatching. Moreover, embryo toxicity was evident: Delay on the otolith formation and eye and body pigmentation were found, and malformations were also evident, including spine malformations, pericardial oedema and undersize. Biomarkers levels were affected: ChE and LDH activity were increased in larvae exposed to 0.25 mg/l, and GST activity was increased in larvae exposed to 0.25 and 0.35 mg/l. TCS also demonstrated acute toxicity to adult zebrafish (96 h LC₅₀ = 0.34 mg/l). However, TCS did not change biomarkers levels and did not elicit a micronucleus in adults. Discussions Despite the fact that similar 96 h LC₅₀ values have been found for D. rerio embryos and adults (0.42 and 0.34 mg/l, respectively), the embryo assay was much more informative, showing important effects at several levels, including teratogenic response, hatching delay and alteration of biomarker levels. TCS does not seem to be genotoxic for adult fish or to interfere with biomarkers levels at the concentrations tested. Conclusions TCS has deleterious effects on zebrafish adults and during early stages, (including embryotoxicity, hatching delay and alterations of biomarkers levels). The range of endpoints used on the embryo test allows an integrated analysis that contributes to a better understanding of the toxicity and mode of action of TCS. Recommendations and perspectives Future works should focus on a deeper investigation of TCS modes of action on zebrafish early-life stages. As embryo testing was revealed to be so informative, a refinement of the test could be made, including other endpoints such as different biochemical markers as well as DNA microarrays to assess a gene expression level for the effect of exposure to TCS. In the perspective of risk assessment, these endpoints should be explored in order to assess their usefulness as early warning signs and links should be sought between these short-term tests and effects of long-term exposures as it is observed in more realistic scenarios.
Show more [+] Less [-]A field survey--Staroe lake suffering from atmospheric deposition in the region north of the Arctic Circle
2009
Kikuchi, Ryunosuke | Gorbacheva, Tamara T
Background, aim, and scope The Arctic holds large stores of minerals, and extracted materials are provided to the world's economy; in this sense, the Arctic issue associated with mining is not local but global. In a part of the Arctic region (the Kola Peninsula, 66-70° N and 28-41° E), metal levels are generally elevated in the lake sediment. There is a question as to what results in elevated metal levels--a natural process (naturally abundant minerals) or an anthropogenic process (mining and metallurgy). In terms of solving this question, Staroe lake located on the Kola Peninsula was researched as a case study. Materials and methods The following parameters were determined in relation with Staroe lake: (1) the current quality of the lake's water--each 1,000-ml sample was collected at a surface point and a deep point (near the bottom layer), and the collected samples were directly analyzed after filtration; (2) atmospheric bulk deposition--bulk deposition was collected using a set of three rainwater samplers near the lake. In addition, bulk deposition was collected in a background site (250 km to the southwest of the smelter complex) as a reference; and (3) sediment profile (plus principal component analysis)--lake-bottom sediment was collected by an open-gravimetric column sampler equipped with an automatic diaphragm. After collection, the sample columns were cut at a 1-cm interval for analysis. Eigenvalues and variances by factor were calculated from the correlation coefficients. Results The obtained data show that (1) naturally poor elements (Cu, Ni, Si, and SO₄ ²⁻) dominantly influence the lake's water quality; (2) they are transported from the anthropogenic sources to the study lake through the atmospheric pathway; (3) mainly the contents of Cu, Ni, Sr, and Ca have influenced the sediment quality since the 1950s, corresponding to the industrial movement; and (4) Cu, Ni, and Sr originate from an anthropogenic source (smelter), and Ca originates from both natural and anthropogenic sources. Discussion As compared with the Russian standard (San Pin 2.1.980-00), the contents of NO₃ ⁻ (50.3 ± 0.1 mg l⁻¹) and particulates (2.3 ± 0.2 mg l⁻¹) exceeded the standard levels (0.7 mg l⁻¹ NO₃ ⁻ and 45 mg l⁻¹ particulates); Staroe lake may be slightly contaminated. However, the contamination factor (comparison with the background data) implies that Staroe lake is considerably contaminated. There is a strong possibility that fine overburden detritus (<0.1 mm diameter) may be transported from an open pit to the study lake by natural forces such as wind. Although it is difficult to suppose that one factor dominantly affects the sediment quality, it follows from a factor analysis that factors 1 and 2 account for about 70% of the total variance: Factor 1 is the most dominant, and factor 2 is the second most dominant in the variability of sediment quality. It is considered that Cu, Sr, and Ni in factor 1 originate from anthropogenic sources because they are poor in sediment rocks. Conclusions The field survey conducted in Staroe lake can give the following answers to the key objectives: (1) The present water quality is affected by Cu, Ni, Si, and SO₄ ²⁻ in light of the contamination factor, and these elements originate from anthropogenic sources (the smelter and the open pit) and are transported to the lake through the atmospheric pathway; (2) the sediment profile and statistic analysis show that the lake quality has been influenced by deposition of metals since the 1950s; and (3) Cu, Ni, Sr, and Ca have influenced the sediment quality in light of the most dominant factor--Cu, Ni, and Sr originate from an anthropogenic source, whereas Ca comes from both natural and anthropogenic sources. Recommendations and perspectives The presented lake survey shows that the dispersion of human-related pollutants via the atmospheric pathway takes place in the Arctic region. If the current pollution continues without countermeasures, the high-latitude environment may lose its original characteristics; hence, this subject is important when considering how to implement a wide range of environmental protection measures in the Arctic.
Show more [+] Less [-]Long-range atmospheric transport of three toxaphene congeners across Europe. Modeling by chained single-box FATEMOD program
2009
Paasivirta, Jaakko | Sinkkonen, Seija | Nikiforov, Vladimir | Kryuchkov, Fedor | Kolehmainen, Erkki | Laihia, Katri | Valkonen, Arto | Lahtinen, Manu
Background, aims, and scope Since toxaphene (polychlorocamphene, polychloropinene, or strobane) mixtures were applied for massive insecticide use in the 1960s to replace the use of DDT, some of their congeners have been found at high latitudes far away from the usage areas. Especially polychlorinated bornanes have demonstrated dominating congeners transported by air up to the Arctic areas. Environmental fate modeling has been applied to monitor this phenomenon using parallel zones of atmosphere around the globe as interconnected environments. These zones, shown in many meteorological maps, however, may not be the best way to configure atmospheric transport in air trajectories. The latter could also be covered by connecting a chain of simple model boxes. We aim to study this alternative approach by modeling the trajectory chain using catchment boxes of our FATEMOD model. Polychlorobornanes analyzed in biota of the Barents Sea offered one case to study this modeling alternative, while toxaphene has been and partly still is used massively at southern East Europe and around rivers flowing to the Aral Sea. Materials and methods Pure model substances of three polychlorobornanes (toxaphene congeners P26, P50, and P62) were synthesized, their environmentally important thermal properties measured by differential scanning calorimetry, as evaluated from literature data, and their temperature dependences estimated by the QSPR programs VPLEST, WATSOLU, and TDLKOW. The evaluated property parameters were used to model their atmospheric long-range transport from toxaphene heavy usage areas in Ukraine and Aral/SyrDarja/AmuDarja region areas, through East Europe and Northern Norway (Finnmarken) to the Barents Sea. The time period used for the emission model was June 1997. Usual weather conditions in June were applied in the model, which was constructed by chaining FATEMOD model boxes of the catchment's areas along assumed maximal air flow trajectories. Analysis of the three chlorobornanes in toxaphene mixtures function as a basis for the estimates of emission levels caused by its usage. High estimate (A) was taken from contents in a Western product chlorocamphene and low estimate (B) from mean contents in Russian polychloroterpene products to achieve modeled water concentrations. Bioaccumulation to analyzed lipid of aquatic biota at the target region was estimated by using statistical calculation for persistent organic pollutants in literature. Results The results from model runs A and B (high and low emission estimate) for levels in sea biota were compared to analysis results of samples taken in August 1997 at Barents Sea. The model results (ng g⁻¹ lw): 4-95 in lipid of planktovores and 7-150 in lipid of piscivores, were in fair agreement with the analysis results from August 1997: 21-31 in Themisto libellula (chatka), 26-42 in Boreocadus saida (Polar cod), and 5-27 in Gadus morhua (cod) liver. Discussion The modeling results indicate that the application of chained simple multimedia catchment boxes on predicted trajectory is a useful method for estimation of volatile airborne persistent chemical exposures to biota in remote areas. For hazard assessment of these pollutants, their properties, especially temperature dependences, must be estimated by a reasonable accuracy. That can be achieved by using measurements in laboratory with pure model compounds and estimation of properties by thermodynamic QSPR methods. The property parameters can be validated by comparing their values at an environmental temperature range with measured or QSPR-estimated values derived by independent methods. The chained box method used for long-range air transport modeling can be more suitable than global parallel zones modeling used earlier, provided that the main airflow trajectories and properties of transported pollutants are predictable enough. Conclusions Long-range air transport modeling of persistent, especially photo-resistant organic compounds using a chain of joint simple boxes of catchment's environments is a feasible method to predict concentrations of pollutants at the target area. This is justified from model results compared with analytical measurements in Barents Sea biota in August 1997: three of six modeled values were high and the other three low compared to the analysis results. The order of magnitude level was similar in both modeled (planktovore and piscivore) and observed (chatka and polar cod) values of lipid samples. The obtained results were too limited to firm validation but are sufficient to justify feasibility of the method, which prompts one to perform more studies on this modeling system. Recommendations and perspectives For assessment of the risk of environmental damages, chemical fate determination is an essential tool for chemical control, e.g., for EU following the REACH rules. The present conclusion of applicability of the chained single-box multimedia modeling can be validated by further studies using analyses of emissions and target biota in various other cases. To achieve useful results, fate models built with databases having automatic steps for most calculations and outputs accessible to all chemical control professionals are essential. Our FATEMOD program catchments at environments and compound properties listed in the database represent a feasible tool for local, regional, and, according our present test results, for global exposure predictions. As an extended use of model, emission estimates can be achieved by reversed modeling from analysis results of samples corresponding to the target area.
Show more [+] Less [-]Endosulfan in China 2--emissions and residues
2009
Jia, Hongliang | Sun, Yeqing | Li, Yi-Fan | Tian, Chongguo | Wang, Degao | Yang, Meng | Ding, Yongshen | Ma, Jianmin
Background, aim, and scope Endosulfan is one of the organochlorine pesticides (OCPs) and also a candidate to be included in a group of new persistent organic pollutants (UNEP 2007). The first national endosulfan usage inventories in China with 1/4° longitude by 1/6° latitude resolution has been reported in an accompanying paper. In the second part of the paper, we compiled the gridded historical emissions and soil residues of endosulfan in China from the usage inventories. Based on the residue/emission data, gridded concentrations of endosulfan in Chinese soil and air have been calculated. These inventories will provide valuable data for the further study of endosulfan. Methods Emission and residue of endosulfan were calculated from endosulfan usage by using a simplified gridded pesticide emission and residue model--SGPERM, which is an integrated modeling system combining mathematical model, database management system, and geographic information system. By using the emission and residue inventories, annual air and soil concentrations of endosulfan in each cell were determined. Results and discussion Historical gridded emission and residue inventories of α- and β-endosulfan in agricultural soil in China with 1/4° longitude by 1/6° latitude resolution have been created. Total emissions were around 10,800 t, with α-endosulfan at 7,400 t and β-endosulfan at 3,400 t from 1994 to 2004. The highest residues were 140 t for α-endosulfan and 390 t for β-endosulfan, and the lowest residues were 0.7 t for α-endosulfan and 170 t for β-endosulfan in 2004 in Chinese agricultural soil where endosulfan was applied. Based on the emission and residue inventories, concentrations of α- and β-endosulfan in Chinese air and agricultural surface soil were also calculated for each grid cell. We have estimated annual averaged air concentrations and the annual minimum and maximum soil concentrations across China. The real concentrations will be different from season to season. Although our model does not consider the transport of the insecticide in the atmosphere, which could be very important in some areas during some special time, the estimated concentrations of endosulfan in Chinese air and soil derived from the endosulfan emission and residue inventories are in general consistent with the published monitoring data. Conclusions To our knowledge, this work is the first inventory of this kind for endosulfan published on a national scale. Concentrations of the chemical in Chinese air and agricultural surface soil were calculated for each grid cell. Results show that the estimated concentrations of endosulfan in Chinese air and soil agree reasonably well with the monitoring data in general. Recommendations and perspectives The gridded endosulfan emission/residue inventories and also the air and soil concentration inventories created in this study will be updated upon availability of new information, including usage and monitoring data. The establishment of these inventories for the OCP is important for both scientific communities and policy makers.
Show more [+] Less [-]Evaluation of resin and fatty acid concentration levels by online sample enrichment followed by atmospheric pressure chemical ionization-mass spectrometry (APCI-MS)
2009
Valto, Piia | Knuutinen, Juha | Alén, Raimo
Background, aim, and scope In papermaking, there is a continuous interest both to minimize fresh water consumption and to reduce discharges into the environment. These general trends mean an increase in the amounts of detrimental substances, such as resin and fatty acids, in papermaking process waters. Resin acids, in particular, are responsible for much of the toxicity typically present in paper mill effluents and, for this reason, the routine and rapid monitoring of these compounds in various process streams is necessary. This also means that there is a continuous need to develop straightforward offline and online techniques to clarify problems occurring, for example, as a result of the introduction of more intensively closed systems of water circulation. In the present study, we describe the use of a novel, online, sample enrichment technique followed by atmospheric pressure chemical ionization-mass spectrometry (APCI-MS) suitable for monitoring the concentration levels of common resin and fatty acids in papermaking process waters. Materials and methods The representative process water samples were taken from the grinding zone of a thermomechanical pulping mill. The samples were first preconcentrated in a precolumn C18, and the analytes were transferred online to MS. The high intensive [M-H]⁻ ion was used for the identification of each analyte since, according to the present ionization method, no other fragmentation was observed. Laboratory-scale, online measurements with an online sample feed were carried out by connecting a centrifugal pump and a ceramic filter to the APCI-MS. Results Quality parameters, such as repeatability, linearity, and limit of detection (LOD), were determined by using dehydroabietic acid (DHAA) in order to evaluate the suitability of the method for the rapid screening of concentration levels. This method provided satisfactory linearity and a good correlation between analyte concentration and peak area. The suitability of the system for the continuous analysis of the same acids was evaluated in laboratory-scale, online experiments. In all cases, the response to changes in the analyte concentration was linear, and the repeatability of the system was also satisfactory. Discussion Only a few studies have been published on the analysis of resin and fatty acids with MS techniques. The present method was applied to the monitoring of dehydroabietic, oleic, and stearic acids. The quality parameters were highly comparable with those reported earlier, and the LOD values of the DHAA were below the levels usually encountered in process waters. The quality parameters were only slightly higher than those obtained by the traditional methods of analysis, probably due to the absence of an effective sample clean-up before analysis. Conclusions The results of the laboratory-scale, online experiments indicated that the online enrichment APCI-MS system is a suitable alternative for monitoring the concentration levels of selected resin and fatty acids in papermaking process waters. The method can be used, for example, to provide useful information about the concentration levels of these acids in different stages of the process, thus signaling possibly impending problems. In general, faster and simpler measurements are needed to meet the requirements for a reduction in fresh water usage in papermaking. Recommendations and perspectives Compared to the conventional methods used for this purpose, the main benefits of the method are rapidity of measurement, simplicity of use, and absence of the need for multistage sample treatments (short analysis time). For this reason, this online method is more suitable for the control of papermaking by analyzing the concentration levels of interfering substances (i.e., selected resin and fatty acids) than an offline analysis detailing all the individual extractives-based compounds in process streams. It is also obvious that the technique can easily be modified for other environmental pollutants as well.
Show more [+] Less [-]Humic substances--part 7: the biogeochemistry of dissolved organic carbon and its interactions with climate change
2009
Porcal, Petr | Koprivnjak, Jean-François | Molot, Lewis A. | Dillon, Peter J.
Background, aim, and scope Dissolved organic matter, measured as dissolved organic carbon (DOC), is an important component of aquatic ecosystems and of the global carbon cycle. It is known that changes in DOC quality and quantity are likely to have ecological repercussions. This review has four goals: (1) to discuss potential mechanisms responsible for recent changes in aquatic DOC concentrations; (2) to provide a comprehensive overview of the interactions between DOC, nutrients, and trace metals in mainly boreal environments; (3) to explore the impact of climate change on DOC and the subsequent effects on nutrients and trace metals; and (4) to explore the potential impact of DOC cycling on climate change. Main features We review recent research on the mechanisms responsible for recent changes in aquatic DOC concentrations, DOC interactions with trace metals, N, and P, and on the possible impacts of climate change on DOC in mainly boreal lakes. We then speculate on how climate change may affect DOC export and in-lake processing and how these changes might alter nutrient and metal export and processing. Furthermore, the potential impacts of changing DOC cycling patterns on climate change are examined. Results It has been noted that DOC concentrations in lake and stream waters have increased during the last 30 years across much of Europe and North America. The potential reasons for this increase include increasing atmospheric CO₂ concentration, climate warming, continued N deposition, decreased sulfate deposition, and hydrological changes due to increased precipitation, droughts, and land use changes. Any change in DOC concentrations and properties in lakes and streams will also impact the acid-base chemistry of these waters and, presumably, the biological, chemical, and photochemical reactions taking place. For example, the interaction of trace metals with DOC may be significantly altered by climate change as organically complexed metals such as Cu, Fe, and Al are released during photo-oxidation of DOC. The production and loss of DOC as CO₂ from boreal lakes may also be affected by changing climate. Climate change is unlikely to be uniform spatially with some regions becoming wetter while others become drier. As a result, rates of change in DOC export and concentrations will vary regionally and the changes may be non-linear. Discussion Climate change models predict that higher temperatures are likely to occur over most of the boreal forests in North America, Europe, and Asia over the next century. Climate change is also expected to affect the severity and frequency of storm and drought events. Two general climate scenarios emerge with which to examine possible DOC trends: warmer and wetter or warmer and drier. Increasing temperature and hydrological changes (specifically, runoff) are likely to lead to changes in the quality and quantity of DOC export from terrestrial sources to rivers and lakes as well as changes in DOC processing rates in lakes. This will alter the quality and concentrations of DOC and its constituents as well as its interactions with trace metals and the availability of nutrients. In addition, export rates of nutrients and metals will also change in response to changing runoff. Processing of DOC within lakes may impact climate depending on the extent to which DOC is mineralized to dissolved inorganic carbon (DIC) and evaded to the atmosphere or settles as particulate organic carbon (POC) to bottom sediments and thereby remaining in the lake. The partitioning of DOC between sediments and the atmosphere is a function of pH. Decreased DOC concentrations may also limit the burial of sulfate, as FeS, in lake sediments, thereby contributing acidity to the water by increasing the formation of H₂S. Under a warmer and drier scenario, if lake water levels fall, previously stored organic sediments may be exposed to greater aeration which would lead to greater CO₂ evasion to the atmosphere. The interaction of trace metals with DOC may be significantly altered by climate change. Iron enhances the formation of POC during irradiation of lake water with UV light and therefore may be an important pathway for transfer of allochthonous DOC to the sediments. Therefore, changing Fe/DOC ratios could affect POC formation rates. If climate change results in altered DOC chemistry (e.g., fewer and/or weaker binding sites) more trace metals could be present in their toxic and bioavailable forms. The availability of nutrients may be significantly altered by climate change. Decreased DOC concentrations in lakes may result in increased Fe colloid formation and co-incident loss of adsorbable P from the water column. Conclusions Climate change expressed as changes in runoff and temperature will likely result in changes in aquatic DOC quality and concentration with concomitant effects on trace metals and nutrients. Changes in the quality and concentration of DOC have implications for acid-base chemistry and for the speciation and bioavailability of certain trace metals and nutrients. Moreover, changes in DOC, metals, and nutrients are likely to drive changes in rates of C evasion and storage in lake sediments. Recommendations and perspectives The key controls on allochthonous DOC quality, quantity, and catchment export in response to climate change are still not fully understood. More detailed knowledge of these processes is required so that changes in DOC and its interactions with nutrients and trace metals can be better predicted based on changes caused by changing climate. More studies are needed concerning the effects of trace metals on DOC, the effects of changing DOC quality and quantity on trace metals and nutrients, and how runoff and temperature-related changes in DOC export affect metal and nutrient export to rivers and lakes.
Show more [+] Less [-]