Refine search
Results 661-670 of 5,152
Citizen science identifies the effects of nitrogen deposition, climate and tree species on epiphytic lichens across the UK Full text
2018
Welden, N.A. | Wolseley, P.A. | Ashmore, M.R.
A national citizen survey quantified the abundance of epiphytic lichens that are known to be either sensitive or tolerant to nitrogen (N) deposition. Records were collected across the UK from over 10,000 individual trees of 22 deciduous species. Mean abundance of tolerant and sensitive lichens was related to mean N deposition rates and climatic variables at a 5 km scale, and the response of lichens was compared on the three most common trees (Quercus, Fraxinus and Acer) and by assigning all 22 tree species to three bark pH groups. The abundance of N-sensitive lichens on trunks decreased with increasing total N deposition, while that of N-tolerant lichens increased. The abundance of N-sensitive lichens on trunks was reduced close to a busy road, while the abundance of N-tolerant lichens increased. The abundance of N-tolerant lichen species on trunks was lower on Quercus and other low bark pH species, but the abundance of N-sensitive lichens was similar on different tree species. Lichen abundance relationships with total N deposition did not differ between tree species or bark pH groups. The response of N-sensitive lichens to reduced nitrogen was greater than to oxidised N, and the response of N-tolerant lichens was greater to oxidised N than to reduced N. There were differences in the response of N-sensitive and N-tolerant lichens to rainfall, humidity and temperature. Relationships with N deposition and climatic variables were similar for lichen presence on twigs as for lichen abundance on trunks, but N-sensitive lichens increased, rather than decreased, on twigs of Quercus/low bark pH species. The results demonstrate the unique power of citizen science to detect and quantify the air pollution impacts over a wide geographical range, and specifically to contribute to understanding of lichen responses to different chemical forms of N deposition, local pollution sources and bark chemistry.
Show more [+] Less [-]Cadmium dynamics in soil pore water and uptake by rice: Influences of soil-applied selenite with different water managements Full text
2018
Wan, Yanan | Camara, Aboubacar Younoussa | Yu, Yao | Wang, Qi | Guo, Tianliang | Zhu, Lina | Li, Huafen
Cadmium (Cd) in rice grains is a potential threat to human health. This study investigated the effects of selenite fertilisation (0 mg kg−1, 0.5 mg kg−1, and 1.0 mg kg−1) on soil solution Cd dynamics and rice uptake. Rice was grown in two Cd-contaminated soils in Jiangxi and Hunan Provinces under two different sets of conditions: aerobic and flooded. The experiments were conducted in pots. The plants were harvested at the seedling stage and at maturity to determine their Cd levels. Soil solutions were also extracted during the growing season to monitor Cd dynamics. The results showed that in the Jiangxi soil (pH 5.25), Cd concentrations in the soil solutions, seedlings, and mature rice plants were higher under aerobic than under flooded water management conditions. In the Hunan soil (pH 7.26), however, flooding decreased Cd levels in the rice seedlings but not in mature plants. Selenite additions to the Hunan soil decreased Cd concentrations in the soil solutions and in the mature rice plants. These effects were not observed for the solutions or the plants from Jiangxi soil amended with selenite. Relative to the control treatment, 0.5 mg kg−1 selenite decreased the rice grain Cd content by 45.2% and 67.7% under aerobic and flooding conditions, respectively. The results demonstrated that water management regimes affected rice Cd uptake more effectively in Jiangxi than in Hunan soil, whereas selenite addition was more effective in Hunan than in Jiangxi soil. Selenite addition was also more effective at reducing rice grain Cd levels when it was applied under flooding than under aerobic conditions.
Show more [+] Less [-]Case study of spring haze in Beijing: Characteristics, formation processes, secondary transition, and regional transportation Full text
2018
Li, Hui | Duan, Fengkui | Ma, Yongliang | He, Kebin | Zhu, Lidan | Ma, Tao | Ye, Siqi | Yang, Shuo | Huang, Tao | Kimoto, Takashi
Continuous haze monitoring was conducted from 12:00 3 April to 12:00 8 April 2016 in Beijing, China to develop a more detailed understanding of spring haze characteristics. The PM₂.₅ concentration ranged from 6.30 to 165 μg m⁻³ with an average of 63.8 μg m⁻³. Nitrate was the most abundant species, accounting for 36.4% of PM₂.₅, followed by organic carbon (21.5%), NH₄⁺ (19.3%), SO₄²⁻ (18.8%), and elemental carbon (4.10%), indicating the key role of nitrate in this haze event. Species contribution varied based on the phase of the haze event. For example, sulfate concentration was high during the haze formation phase, nitrate was high during the haze, and secondary organic carbon (SOC) had the highest contribution during the scavenging phase. The secondary transition of sulfate was influenced by SO₂, followed by relative humidity (RH) and Oₓ (O₃+NO₂). Nitrate formation occurred in two stages: through NO₂ oxidation, which was vulnerable to Oₓ; and by the partitioning of N (+5) which was susceptible to RH and temperature. SOC tended to form when Oₓ and RH were balanced. According to hourly species behavior, sulfate and nitrate were enriched during haze formation when the mixed layer height decreased. However, SOC accumulated prior to the haze event and during formation, which demonstrated the strong contribution of secondary inorganic aerosols, and the limiting contribution of SOC to this haze case. Investigating backward trajectories showed that high speed northwestern air masses following a straight path corresponded to the clear periods, while southwesterly air masses which traversed heavily polluted regions brought abundant pollutants to Beijing and stimulated the occurrence of haze pollution. Results indicate that the control of NO₂ needs to be addressed to reduce spring haze. Finally, the correlation between air mass trajectories and pollution conditions in Beijing reinforce the necessity of inter-regional cooperation and control.
Show more [+] Less [-]Brood size is reduced by half in birds feeding on flutriafol-treated seeds below the recommended application rate Full text
2018
Lopez-Antia, Ana | Ortiz-Santaliestra, Manuel E. | Mougeot, François | Camarero, Pablo R. | Mateo, Rafael
Despite the efforts of the European Commission to implement measures that offset the detrimental effects of agricultural intensification, farmland bird populations continue to decline. Pesticide use has been pointed out as a major cause of decline, with growing concern about those agro-chemicals that act as endocrine disruptors. We report here on the effects of flutriafol, a ubiquitous systemic fungicide used for cereal seed treatment, on the physiology and reproduction of a declining gamebird. Captive red-legged partridges (Alectoris rufa; n = 11–13 pairs per treatment) were fed wheat treated with 0%, 20% or 100% of the flutriafol application rate during 25 days in late winter. We studied treatment effects on the reproductive performance, carotenoid-based coloration and cellular immune responsiveness of adult partridges, and their relationship with changes in oxidative stress biomarkers and plasma biochemistry. We also studied the effect of parental exposure on egg antioxidant content and on the survival, growth and cellular immune response of offspring. Exposed partridges experienced physiological effects (reduced levels of cholesterol and triglycerides), phenotypical effects (a reduction in the carotenoid-based pigmentation of their eye rings), and most importantly, severe adverse effects on reproduction: a reduced clutch size and fertile egg ratio, and an overall offspring production reduced by more than 50%. No effects on body condition or cellular immune response of either exposed adult or their surviving offspring were observed. These results, together with previous data on field exposure in wild partridges, demonstrate that seed treatment with flutriafol represents a risk for granivorous birds; they also highlight a need to improve the current regulation system used for foreseeing and preventing negative impacts of Plant Protection Products on wildlife.
Show more [+] Less [-]Toxicological and chemical insights into representative source and drinking water in eastern China Full text
2018
Shi, Peng | Zhou, Sicong | Xiao, Hongxia | Qiu, Jingfan | Li, Aimin | Zhou, Qing | Pan, Yang | Hollert, Henner
Drinking water safety is continuously threatened by the emergence of numerous toxic organic pollutants (TOPs) in environmental waters. In this study, an approach integrating in vitro bioassays and chemical analyses was performed to explore toxicological profiles of representative source and drinking water from waterworks of the Yangtze River (Yz), Taihu Lake (Th), and the Huaihe River (Hh) basins in eastern China. Overall, 34 of 96 TOPs were detected in all water samples, with higher concentrations in both source and drinking water samples of Hh, and pollutant profiles also differed across different river basins. Non-specific bioassays indicated that source water samples of Hh waterworks showed higher genotoxicity and mutagenicity than samples of Yz and Th. An EROD assay demonstrated dioxin-like toxicity which was detected in 5 of 7 source water samples, with toxin concentration levels ranging from 62.40 to 115.51 picograms TCDD equivalents per liter of water (eq./L). PAHs and PCBs were not the main contributors to observed dioxin-like toxicity in detected samples. All source water samples induced estrogenic activities of 8.00–129.00 nanograms 17β-estradiol eq./L, and estrogens, including 17α-ethinylestradiol and estriol, contributed 40.38–84.15% of the observed activities in examined samples. While drinking water treatments efficiently removed TOPs and their toxic effects, and estrogenic activity was still observed in drinking water samples of Hh. Altogether, this study indicated that the representative source water in eastern China, especially that found in Hh, may negatively affect human health, a finding that demonstrates an urgent requirement for advanced drinking water treatments.
Show more [+] Less [-]Long term trends in atmospheric concentrations of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons: A study of Japanese cities from 1997 to 2014 Full text
2018
Hayakawa, Kazuichi | Tang, Ning | Nagato, Edward Gou | Toriba, Akira | Sakai, Shigekatsu | Kano, Fumio | Goto, Sumio | Endo, Osamu | Arashidani, Kei-ichi | Kakimoto, Hitoshi
Total suspended particulate matter (TSP) was collected during the summer and winter in five Japanese cities spanning Hokkaido to Kyushu (Sapporo, Kanazawa, Tokyo, Sagamihara and Kitakyushu) from 1997 to 2014. Nine polycyclic aromatic hydrocarbons (PAHs) with four to six rings, including pyrene (Pyr) and benzo[a]pyrene (BaP), were identified using high-performance liquid chromatography (HPLC) with fluorescence detection. Two nitropolycyclic aromatic hydrocarbons (NPAHs), 1-nitropyrene (1-NP) and 6-nitrobenzo[a]pyrene (6-NBaP), were identified by HPLC with chemiluminescence detection. A comparison of PAH and NPAH concentrations and [NPAH]/[PAH] ratios such as [1-NP]/[Pyr] and [6-NBaP]/[BaP] revealed the following characteristics in the five cities: (1) In Sapporo, Kanazawa, Tokyo and Sagamihara, the concentrations of PAHs and NPAHs were high at the beginning of the sampling period and then steadily decreased, with NPAHs decreasing faster than PAHs. The large initial [1-NP]/[Pyr] ratios suggest that the major contributor was automobiles but subsequent decreases in this ratio suggest decreased automobile contributions. (2) By contrast, PAH concentrations in Kitakyushu did not decrease during the sampling period, though concentrations of NPAHs decreased. The consistently smaller [1-NP]/[Pyr] ratio and larger [6-NBaP]/[BaP] ratio in Kitakyushu suggests that the major contributor of PAHs was not automobiles but iron manufacturing which uses a large amount of coal. The sudden increase in atmospheric PAH concentrations in the winter of 2014 may also be due to iron manufacturing.
Show more [+] Less [-]Spatial and vertical variations of perfluoroalkyl acids (PFAAs) in the Bohai and Yellow Seas: Bridging the gap between riverine sources and marine sinks Full text
2018
Zhou, Yunqiao | Wang, Tieyu | Li, Qifeng | Wang, Pei | Li, Lei | Chen, Shuqin | Zhang, Yueqing | Kifāyatullāh, K̲h̲ān | Meng, Jing
Perfluoroalkyl acids (PFAAs) are being increasingly reported as emerging contaminants in riverine and marine settings. This study investigated the contamination level and spatial distribution of 17 PFAAs within the depth profile of the Bohai and Yellow Seas using newly detected sampling data from 49 sites (June 29 to July 14, 2016). Moreover, the riverine flux of 11 selected PFAAs in 33 rivers draining into the Bohai and Yellow Seas was estimated from previous studies (2002–2014) in order to establish the relationship between riverine sources and marine sinks. The results showed that the Bohai and Yellow Seas were commonly contaminated with PFAAs: total concentrations of PFAAs in the surface, middle, and bottom zones ranged from 4.55 to 556 ng L−1, 4.61–575 ng L−1, and 4.94–572 ng L−1, respectively. The predominant compounds were PFOA (0.55–449 ng L−1), PFBA (<LOQ-34.5 ng L−1), and PFPeA (<LOQ-54.3 ng L−1), accounting for 10.1–87.0%, 5.2–59.5%, and 0.6–68.6% of the total PFAAs, respectively. In general, the ∑PFAA concentrations showed a slightly decreasing trend with sampling depth. Contamination was particularly severe in Laizhou Bay, fed by the Xiaoqing River and an industrial park known for PFAA production. The total riverine PFAA mass flux into the Bohai and Yellow Seas was estimated to be 72.2 t y−1, of which 94.8% was carried by the Yangtze and Xiaoqing Rivers. As the concentration of short-chain PFAAs begins to rise in seawater, further studies on the occurrence and fate of short-chain PFAAs with special focus on effective control measures would be very timely, particularly in the Xiaoqing River and Laizhou Bay.
Show more [+] Less [-]Quantifying the influence of natural and socioeconomic factors and their interactive impact on PM2.5 pollution in China Full text
2018
Yang, Dongyang | Wang, Xiaomin | Xu, Jianhua | Xu, Chengdong | Lu, Debin | Ye, Chao | Wang, Zujing | Bai, Ling
PM2.5 pollution is an environmental issue caused by multiple natural and socioeconomic factors, presenting with significant spatial disparities across mainland China. However, the determinant power of natural and socioeconomic factors and their interactive impact on PM2.5 pollution is still unclear. In the study, the GeogDetector method was used to quantify nonlinear associations between PM2.5 and potential factors. This study found that natural factors, including ecological environments and climate, were more influential than socioeconomic factors, and climate was the predominant factor (q = 0.56) in influencing PM2.5 pollution. Among all interactions of the six influencing factors, the interaction of industry and climate had the largest influence (q = 0.66). Two recognized major contaminated areas were the Tarim Basin in the northwest region and the eastern plain region; the former was mainly influenced by the warm temperate arid climate and desert, and the latter was mainly influenced by the warm temperate semi-humid climate and multiple socioeconomic factors. The findings provided an interpretation of the influencing mechanisms of PM2.5 pollution, which can contribute to more specific policies aimed at successful PM2.5 pollution control and abatement.
Show more [+] Less [-]Residuals of organophosphate esters in foodstuffs and implication for human exposure Full text
2018
Ding, Jinjian | Deng, Tongqing | Xu, Mengmeng | Wang, Shen | Yang, Fangxing
Foodstuffs may be contaminated by organophosphate esters (OPEs) and become an important source of human exposure since OPEs are ubiquitous in the environment. In the present study, 10 OPEs were analyzed in various food matrices collected from a city in Eastern China including chicken, pork, fishes, vegetables, tofu, eggs, milk and cereals. The concentrations of Σ₁₀OPEs ranged from 1.1 to 9.6 ng g⁻¹ fresh weight (fw) in the foodstuffs. Cereals had the highest residual level of total OPEs with a mean value of 5.7 ng g⁻¹ fw. Tris(2-ethylhexyl) phosphate was detected in all foodstuff samples and showed the highest median residual concentration of 1.3 ng g⁻¹ fw among the OPE analogs. The daily dietary intake of OPEs was calculated as 3.6 and 2.4 μg d⁻¹ for adults and children. Cereals were identified as the major contributor to the total OPEs among different types of foodstuffs. Preliminary exposure assessment revealed that the current non-cancer health risks of OPEs via dietary intake were in the range of 10⁻⁵-10⁻³, indicating low risk levels. Moreover, the hazard index of OPEs indicated that the risk for children (3 × 10⁻³) was higher than adults (2 × 10⁻³).
Show more [+] Less [-]Emission of volatile organic compounds from plants shows a biphasic pattern within an hormetic context Full text
2018
Agathokleous, Evgenios | Kitao, Mitsutoshi | Calabrese, Edward J.
Biogenic volatile organic compounds (BVOCs) are released to the atmosphere from vegetation. BVOCs aid in maintaining ecosystem sustainability via a series of functions, however, VOCs can alter tropospheric photochemistry and negatively affect biological organisms at high concentrations. Due to their critical role in ecosystem and environmental sustainability, BVOCs receive particular attention by global change biologists. To understand how plant VOC emissions affect stress responses within a dose-response context, dose responses should be evaluated. This commentary collectively documents hormetic-like responses of plant-emitted VOCs to external stimuli. Hormesis is a generalizable biphasic dose response phenomenon where the response to low doses acts in an opposite way at high doses. These collective findings suggest that ecological implications of low-level stress that may alter BVOC emissions should be considered in future studies. This commentary promotes new insights into the interface between biological systems and environmental change that influence several parts of the globe, and provide a base for advancing hazard assessment testing strategies and protocols to provide decision makers with adequate data for generating environmental standards.
Show more [+] Less [-]