Refine search
Results 671-680 of 3,991
Estimating ground-level PM10 in a Chinese city by combining satellite data, meteorological information and a land use regression model
2016
Meng, Xia | Fu, Qingyan | Ma, Zongwei | Chen, Li | Zou, Bin | Zhang, Yan | Xue, Wenbo | Wang, Jinnan | Wang, Dongfang | Kan, Haidong | Liu, Yang
Development of exposure assessment model is the key component for epidemiological studies concerning air pollution, but the evidence from China is limited. Therefore, a linear mixed effects (LME) model was established in this study in a Chinese metropolis by incorporating aerosol optical depth (AOD), meteorological information and the land use regression (LUR) model to predict ground PM10 levels on high spatiotemporal resolution. The cross validation (CV) R² and the RMSE of the LME model were 0.87 and 19.2 μg/m³, respectively. The relative prediction error (RPE) of daily and annual mean predicted PM10 concentrations were 19.1% and 7.5%, respectively. This study was the first attempt in China to estimate both short-term and long-term variation of PM10 levels with high spatial resolution in a Chinese metropolis with the LME model. The results suggested that the LME model could provide exposure assessment for short-term and long-term epidemiological studies in China.
Show more [+] Less [-]Multiscale correlations of iron phases and heavy metals in technogenic magnetic particles from contaminated soils
2016
Yu, Xiuling | Lu, Shenggao
Technogenic magnetic particles (TMPs) are carriers of heavy metals and organic contaminants, which derived from anthropogenic activities. However, little information on the relationship between heavy metals and TMP carrier phases at the micrometer scale is available. This study determined the distribution and association of heavy metals and magnetic phases in TMPs in three contaminated soils at the micrometer scale using micro-X-ray fluorescence (μ-XRF) and micro-X-ray absorption near-edge structure (μ-XANES) spectroscopy. Multiscale correlations of heavy metals in TMPs were elucidated using wavelet transform analysis. μ-XRF mapping showed that Fe was enriched and closely correlated with Co, Cr, and Pb in TMPs from steel industrial areas. Fluorescence mapping and wavelet analysis showed that ferroalloy was a major magnetic signature and heavy metal carrier in TMPs, because most heavy metals were highly associated with ferroalloy at all size scales. Multiscale analysis revealed that heavy metals in the TMPs were from multiple sources. Iron K-edge μ-XANES spectra revealed that metallic iron, ferroalloy, and magnetite were the main iron magnetic phases in the TMPs. The relative percentage of these magnetic phases depended on their emission sources. Heatmap analysis revealed that Co, Pb, Cu, Cr, and Ni were mainly derived from ferroalloy particles, while As was derived from both ferroalloy and metallic iron phases. Our results indicated the scale-dependent correlations of magnetic phases and heavy metals in TMPs. The combination of synchrotron based X-ray microprobe techniques and multiscale analysis provides a powerful tool for identifying the magnetic phases from different sources and quantifying the association of iron phases and heavy metals at micrometer scale.
Show more [+] Less [-]Hydrology and phosphorus transport simulation in a lowland polder by a coupled modeling system
2016
Yan, Renhua | Huang, Jiacong | Li, Lingling | Gao, Junfeng
Modeling the rain-runoff processes and phosphorus transport processes in lowland polders is critical in finding reasonable measures to alleviate the eutrophication problem of downstream rivers and lakes. This study develops a lowland Polder Hydrology and Phosphorus modeling System (PHPS) by coupling the WALRUS-paddy model and an improved phosphorus module of a Phosphorus Dynamic model for lowland Polder systems (PDP). It considers some important hydrological characteristics, such as groundwater–unsaturated zone coupling, groundwater–surface water feedback, human-controlled irrigation and discharge, and detailed physical and biochemical cycles of phosphorus in surface water. The application of the model in the Jianwei polder shows that the simulated phosphorus matches well with the measured values. The high precision of this model combined with its low input data requirement and efficient computation make it practical and easy to the water resources management of Chinese polders. Parameter sensitivity analysis demonstrates that Kuptake, cQ2, cW1, and cQ1 exert a significant effect on the modeled results, whereas KresuspensionMax, Ksettling, and Kmineralization have little effect on the modeled total phosphorus. Among the three types of uncertainties (i.e., parameter, initial condition, and forcing uncertainties), forcing uncertainty produces the strongest effect on the simulated phosphorus. Based on the analysis result of annual phosphorus balance when considering the high import from irrigation and fertilization, lowland polder is capable of retaining phosphorus and reducing phosphorus export to surrounding aquatic ecosystems because of their special hydrological regulation regime.
Show more [+] Less [-]Particle deposition in a peri-urban Mediterranean forest
2016
Urban and peri-urban forests provide a multitude of Ecosystem Services to the citizens. While the capacity of removing carbon dioxide and gaseous compounds from the atmosphere has been tested, their capacity to sequestrate particles (PM) has been poorly investigated. Mediterranean forest ecosystems are often located nearby or inside large urban areas. This is the case of the city of Rome, Italy, which hosts several urban parks and is surrounded by forested areas. In particular, the Presidential Estate of Castelporziano is a 6000 ha forested area located between the Tyrrhenian coast and the city (25 km downtown of Rome). Under the hypothesis that forests can ameliorate air quality thanks to particle deposition, we measured fluxes of PM1, 2.5 and 10 with fast optical sensors and eddy covariance technique. We found that PM1 is mainly deposited during the central hours of the day, while negligible fluxes were observed for PM 2.5 and 10. A Hybrid Single–Particle Lagrangian Integrated Trajectory model (HYSPLIT v4) simulated PM emission from traffic areas in the city of Rome and showed that a significant portion of PM is removed by vegetation in the days when the plume trajectory meets the urban forest.
Show more [+] Less [-]TBBPA exposure during a sensitive developmental window produces neurobehavioral changes in larval zebrafish
2016
Tetrabromobisphenol A (TBBPA), one of the most widely used brominated flame retardants (BFRs), is a ubiquitous contaminant in the environment and in the human body. This study demonstrated that zebrafish embryos exposed to TBBPA during a sensitive window of 8–48 h post-fertilization (hpf) displayed morphological malformations and mortality. Zebrafish exposed exclusively between 48 and 96 hpf were phenotypically normal. TBBPA was efficiently absorbed and accumulated in zebrafish embryos, but was eliminated quickly when the exposure solution was removed. Larval behavior assays conducted at 120 hpf indicated that exposure to 5 μM TBBPA from 8 to 48 hpf produced larvae with significantly lower average activity and speed of movement in the normal condition than in those exposed from 48 to 96 hpf. Specifically, 8–48 hpf-exposed larvae spent significantly less time in both activity bursts and gross movements compared to control or 48–96 hpf exposed larvae. Consistent with the motor deficits, TBBPA induced apoptotic cell death, delayed cranial motor neuron development, inhibited primary motor neuron development and loosed muscle fiber during the early developmental stages. To further explore TBBPA-induced developmental and neurobehavioral toxicity, RNA-Seq analysis was used to identify early transcriptional changes following TBBPA exposure. In total, 1969 transcripts were significantly differentially expressed (P < 0.05, FDR < 0.05, 1.5-FC) upon TBBPA exposure. Functional and pathway analysis of the TBBPA transcriptional profile identified biological processes involved in nerve development, muscle filament sliding and contraction, and extracellular matrix disassembly and organization changed significantly. In addition, TBBPA also led to an elevation in the expression of genes encoding uridine diphosphate glucuronyl transferases (ugt), which could affect thyroxine (T4) metabolism and subsequently lead to neurobehavioral changes. In summary, TBBPA exposure during a narrow, sensitive developmental window perturbs various molecular pathways and results in neurobehavioral deficits in zebrafish.
Show more [+] Less [-]Persistent organic pollutants in blood samples of Southern Giant Petrels (Macronectes giganteus) from the South Shetland Islands, Antarctica
2016
Seabirds play an important role as top consumers in the food web and can be used as biomonitors of exposure to pollutants. Contamination studies involving non-destructive sampling methods are of considerable importance, allowing better evaluation of the levels of pollutants and their toxic effects. In the present study, organohalogen contaminants were analyzed in 113 blood samples from Southern Giant Petrel (Macronectes giganteus) adults and chicks collected in the austral summer of 2011/2012 and 2012/2013 from colonies on Elephant and Livingston Islands, South Shetland, Antarctica. Polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB), pentachlorobenzene (PeCB), mirex, dichlorodiphenyltrichloroetane and derivatives (DDTs) and chlordanes were detected in all birds, whereas polybrominated diphenyl ethers (PBDEs) were not detected in any blood samples. No significant differences were found in organochlorine levels between sampling events. Adults exhibited significantly higher levels than chicks, except for PeCB. PCBs, HCB, mirex and DDTs were statistically similar in males and females from Elephant Island. Females on Livingston Island exhibited higher HCB values than males, but no sex differences were found regarding other organochlorines. The similarity in organochlorine levels between sexes in birds with very marked sexual segregation in feeding habits during the breeding season may indicate that significant amounts of contaminants are acquired during migration to lower latitudes, when the diets of males and females are similar. Birds sampled on Livingston Island exhibited significantly lower levels of PCBs, HCB, DDTs, mirex and chlordanes in comparison to those on Elephant Island, which could be the result of distinct foraging patterns between the two colonies. Organochlorine levels were similar between years in birds captured in two consecutive breeding seasons. Blood samples from Southern Giant Petrels adults and chicks proved to be useful for the comparison of intraspecific contamination levels and appear to be adequate for the long-term assessment of organohalogen contaminants in antarctic top predators.Organochlorine contaminants in blood samples of Southern Giant Petrels reflected intra-specific differences and suggested distinct foraging patterns between colonies.
Show more [+] Less [-]Exposure to widespread environmental endocrine disrupting chemicals and human sperm sex ratio
2016
Jurewicz, Joanna | Radwan, Michał | Sobala, Wojciech | Radwan, Paweł | Jakubowski, Lucjusz | Wielgomas, Bartosz | Ligocka, Danuta | Brzeźnicki, Sławomir | Hanke, Wojciech
In recent years, a trend toward a declining proportion of male births has been noted in several, but not all, industrialized countries. The underlying reason for the drop in the sex ratio is unclear, but one theory states that widespread environmental endocrine disrupting chemicals affecting the male reproductive system in a negative manner could be part of the explanation. The present study was designed to investigate whether the urinary phthalate, pyrethroids and polycyclic aromatic hydrocarbons metabolites concentrations were associated with sperm Y:X ratio.The study population consisted of 194 men aged under 45 years of age who attended infertility clinic in Lodz, Poland for diagnostic purposes with normal semen concentration of 20–300 mln/ml or with slight oligozoospermia (semen concentration of 15–20 mln/ml) (WHO, 1999). The Y:X ratio was assessed by fluorescent in situ hybridization. Urinary concentrations of 1-hydroxypyrene were measured by high performance liquid chromatography, phthalate metabolites were analyzed using a procedure based on the LC-MS/MS methods and metabolites of synthetic pyrethroids were assessed by gas chromatography ion-tap mass spectrometry method.After adjustment for potential confounders (past diseases, age, abstinence, smoking, alcohol consumption, sperm concentration, motility, morphology) 5OH MEHP, CDCCA to TDCCA and 1-OHP was negatively related to Y:X sperm chromosome ratio (p = 0.033, p < 0.001, p = 0.047 respectively).As this is the first study to elucidate the association between the level of metabolites of widespread environmental endocrine disrupting chemicals (phthalates, synthetic pyrethroids, polycyclic aromatic hydrocarbons) on sex chromosome ratio in sperm therefore, these findings require further replication in other populations.
Show more [+] Less [-]Impact of bisphenol A (BPA) on early embryo development in the marine mussel Mytilus galloprovincialis: Effects on gene transcription
2016
Balbi, Teresa | Franzellitti, Silvia | Fabbri, Rita | Montagna, Michele | Fabbri, Elena | Canesi, Laura
Bisphenol A (BPA), a monomer used in plastic manufacturing, is weakly estrogenic and a potential endocrine disruptor in mammals. Although it degrades quickly, it is pseudo-persistent in the environment because of continual inputs, with reported concentrations in aquatic environments between 0.0005 and 12 μg/L. BPA represents a potential concern for aquatic ecosystems, as shown by its reproductive and developmental effects in aquatic vertebrates.In invertebrates, endocrine-related effects of BPA were observed in different species and experimental conditions, with often conflicting results, indicating that the sensitivity to this compound can vary considerably among related taxa. In the marine mussel Mytilus galloprovincialis BPA was recently shown to affect early development at environmental concentrations. In this work, the possible effects of BPA on mussel embryos were investigated at the molecular level by evaluating transcription of 13 genes, selected on the basis of their biological functions in adult mussels. Gene expression was first evaluated in trocophorae and D-veligers (24 and 48 h post fertilization) grown in physiological conditions, in comparison with unfertilized eggs. Basal expressions showed a general up-regulation during development, with distinct transcript levels in trocophorae and D-veligers. Exposure of fertilized eggs to BPA (10 μg/L) induced a general upregulation at 24 h pf, followed by down regulation at 48 h pf. Mytilus Estrogen Receptors, serotonin receptor and genes involved in biomineralization (Carbonic Anydrase and Extrapallial Protein) were the most affected by BPA exposure. At 48 h pf, changes in gene expression were associated with irregularities in shell formation, as shown by scanning electron microscopy (SEM), indicating that the formation of the first shelled embryo, a key step in mussel development, represents a sensitive target for BPA. Similar results were obtained with the natural estrogen 17β-estradiol. The results demonstrate that BPA and E2 can affect Mytilus early development through dysregulation of gene transcription.
Show more [+] Less [-]Initial hazard screening for genotoxicity of photo-transformation products of ciprofloxacin by applying a combination of experimental and in-silico testing
2016
Toolaram, Anju Priya | Haddad, Tarek | Leder, Christoph | Kümmerer, Klaus
Ciprofloxacin (CIP) is a broad-spectrum antibiotic found within μg/L concentration range in the aquatic environment. It is a known contributor of umuC induction in hospital wastewater samples. CIP can undergo photolysis to result in many transformation products (TPs) of mostly unknown toxicity. The aims of this study were to determine the genotoxicity of the UV mixtures and to understand the possible genotoxic role of the stable TPs. As such, CIP and its UV-irradiated mixtures were investigated in a battery of genotoxicity and cytotoxicity in vitro assays. The combination index (CI) analysis of residual CIP in the irradiated mixtures was performed for the umu assay. Further, Quantitative Structure–Activity Relationships (QSARs) predicted selected genotoxicity endpoints of the identified TPs. CIP achieved primary elimination after 128 min of irradiation but was not completely mineralized. Nine photo-TPs were identified. The irradiated mixtures were neither mutagenic in the Ames test nor genotoxic in the in vitro micronucleus (MN) test. Like CIP, the irradiated mixtures were umuC inducing. The CI analysis revealed that the irradiated mixtures and the corresponding CIP concentration in the mixtures shared similar umuC potentials. QSAR predictions suggested that the TPs may be capable of inducing chromosome aberration, MN in vivo, bacterial mutation and mammalian mutation. However, the experimental testing for a few genotoxic endpoints did not show significant genotoxic activity for the TPs present as a component of the whole mixture analysis and therefore, further genotoxic endpoints may need to be investigated to fully confirm this.
Show more [+] Less [-]Environmental fate and effect assessment of thioridazine and its transformation products formed by photodegradation
2016
Wilde, Marcelo L. | Menz, Jakob | Trautwein, Christoph | Leder, Christoph | Kümmerer, Klaus
An experimental and in silico quantitative structure-activity relationship (QSAR) approach was applied to assess the environmental fate and effects of the antipsychotic drug Thioridazine (THI). The sunlight-driven attenuation of THI was simulated using a Xenon arc lamp. The photodegradation reached the complete primary elimination, whereas 97% of primary elimination and 11% of mineralization was achieved after 256 min of irradiation for the initial concentrations of 500 μg L−1 and 50 mg L−1, respectively. A non-target approach for the identification and monitoring of transformation products (TPs) was adopted. The structure of the TPs was further elucidated using liquid chromatography–high resolution mass spectrometry (LC–HRMS). The proposed photodegradation pathway included sulfoxidation, hydroxylation, dehydroxylation, and S- and N-dealkylation, taking into account direct and indirect photolysis through a self-sensitizing process in the higher concentration studied. The biodegradability of THI and photolytic samples of THI was tested according to OECD 301D and 301F, showing that THI and the mixture of TPs were not readily biodegradable. Furthermore, THI was shown to be highly toxic to environmental bacteria using a modified luminescent bacteria test with Vibrio fischeri. This bacteriotoxic activity of THI was significantly reduced by phototransformation and individual concentration-response analysis confirmed a lowered bacterial toxicity for the sulfoxidation products Thioridazine-2-sulfoxide and Thioridazine-5-sulfoxide. Additionally, the applied QSAR models predicted statistical and rule-based positive alerts of mutagenic activities for carbazole derivative TPs (TP 355 and TP 339) formed through sulfoxide elimination, which would require further confirmatory in vitro validation tests.
Show more [+] Less [-]