Refine search
Results 71-80 of 63,319
A Preliminary Study on Mercury Contamination in Artisanal and Small-Scale Gold Mining Area in Mandalay Region, Myanmar by using Plant Samples Full text
2022
Kuang, Xiaoxu | Kyaw, Win Thiri | Soe, Pyae Sone | Thandar, Aye Myat | Khin, Hnin Ei | Zaw, Nan Myat Pyae | Sakakibara, Masayuki
A large anthropogenic source of mercury pollution is mercury-dependent artisanal and small-scale gold mining (ASGM). Thabeikkyin Township is a small-scale gold mining township located in Pyin Oo Lwin District in the Mandalay Region, Myanmar. The villages of Thabeikkyin Township engage in gold ore crushing, screening, refining, and other mining activities for a living. Miners in this area commonly use mercury for gold recovery by heating amalgam at their homes, gold shops, on the street, and near the riverbank. The evaporated mercury is released into the atmosphere during the heating process and then transported and deposited in the surrounding environments, resulting in the mercury pollution of air, water, soil, etc. To assess atmospheric mercury pollution, a preliminary study on the environmental mercury contamination from ASGM was conducted in Thabeikkyin Township. High mercury concentrations were observed in plant samples collected near the refining sites, ranging 0.33–6.51 ug/g, compared with 0.02 ug/g in Wet Thay Village, where no mercury use was reported. Correlation coefficients between Hg and other heavy metals showed that no heavy metal concentration significantly correlated with that of Hg. The results indicated that the atmospheric environment in the ASGM area of Thabeikkyin Township was contaminated with mercury originating from ASGM, which could very likely deteriorate the health of surrounding residents.
Show more [+] Less [-]Constructed Wetlands: A sustainable way of Treating Wastewater in Cold Climate - A review Full text
2022
Singh, Adarsh | Katoch, Surjit | Bajpai, Mukul | Rawat, Akash
The use of constructed wetland (CW) is a natural way of treating wastewater sustainably and economically. However, the implementation of these systems in freezing conditions is still a matter of research and development. The treatment capacity of CWs relies largely on the biological and biochemical processes which further depends on physical conditions such as temperature, solar radiations, etc. Application of wetland systems for treating wastewater faces many challenges in regions with cold climates, resolving which this review has been made. This paper presents a thorough understanding of the components of CWs and their role in contaminant removal. A comprehensive review of the different types of CWs has been done describing the treatment efficiency achieved by its implementation in the cold climate. Furthermore, various technologies which can be clubbed with CWs have also been listed along with the treatment efficiencies obtained. Literature survey indicates that the extent of removing organics (COD and BOD5) and total phosphorous (TP) are not likely to be affected, but total nitrogen (TN) removal appears to slow down at low temperatures. Despite several advantages of CW technology, further research is required to select suitable macrophytes and optimum design parameters to compensate for frigid conditions.
Show more [+] Less [-]Ozonation of Procion Blue Reactive Dye and its Kinetics Study Full text
2022
Bhad, Rahul M | Das, Arijit | Kodape, Shyam M.
In advanced oxidation processes, the application of ozonation has been immensely used in recent years for the treatment of effluent water from pharmaceutical, textile and chemical industries. In this study, procian blue, a major and vastly used reactive dye in the textile industry was chosen for ozonation. This work investigated the effect of ozonation for the treatment of synthetic textile effluent water. The change of pH values of dye solutions from 2-12 had moderate effect on dye removal. The degradation rate was faster during the initial period of ozonation and reached highest dye removal around 90 minutes. The highest 87% removal of dye was observed for the case of 60 mg/L dye solution at pH 12. At higher pH, the dye degradation increased as the rate of formation of hydroxyl radical increased with pH. Factors influencing on dye degradation like concentration of dye, time of ozonation, and addition of H2O2 with ozone (combined treatment) were also evaluated. The combined treatment (5 g/L of hydrogen peroxide) increased the degradation of dye to 92% as compared to 85% for pure ozonation process of 60 mg/L dye solution of initial pH 10. The procian blue dye degradation followed pseudo-first order kinetics with a value of rate constant 2.48×10-2 /min.
Show more [+] Less [-]Waste Orange Peel Adsorbent for Heavy Metal Removal from Water Full text
2022
Yirga, Awash | Yadav, Om Prakash | Dey, Tania
Batch adsorption process was employed to remove copper(II) and cadmium(II) ions from contaminated water using dried orange peel powder as a cellulosic adsorbent, which supports circular economy and sustainability. Metal ion concentrations were determined using a flame atomic absorption spectroscopy (FAAS). Effects of pH, sorbate-sorbent contact time, metal ion concentration and adsorbent dose on the removal efficiency of the metal ions was investigated. The adsorption equilibrium was reached at 120 and 150 minutes for Cu(II) ions and Cd(II) ions, respectively. At optimized pH and biosorbent load, 10 mg L-1 of Cu(II) and Cd(II) ions could be removed to the extent 96.9% and 98.1%, respectively, within 2 hrs. However, the percentage removal of metal ions decreased with increasing their initial concentrations. The observed adsorption data was also interpreted in terms of Langmuir and Freundlich adsorption isotherm models. The calculated equilibrium data fitted more adequately with Freundlich model (higher correlation coefficient, R2) than Langmuir model, indicating heterogeneity of adsorption sites due to different functional groups in cellulose. Cd(II) ions showed less binding affinity and less desorption than Cu(II) ions. The maximum adsorption capacity (qmax) of dried orange peel were 2.78 mg/g and 2.57 mg/g for copper(II) and cadmium(II) ions, respectively.
Show more [+] Less [-]Estimation of possible Biodegradation of Polythene by Fungal Isolates Growing on Polythene Debris Full text
2022
Saxena, Ankita | Jain, Sapna | Pareek, Arvind
Consumption of polythene is unavoidable in this era and it is increasing day by day. Polythene’s hazardous waste is adversely effecting environment. In fact any form of polythene is a nuisance to the environment because of strong resistance against degradation thus; they remain in nature for a very long time. Biodegradation is the only promising solution to overcome this problem. Fungi, a group of saprophytic organisms are evolved to adapt for almost every environment, specially marine and freshwater source. This property drives fungi to grown on polythene even in adverse environment. So, present study was planned to compare biological degradation of low density polythene [LDPE] and biodegradable polythene by potential fungus to find out an eco-friendly and economic solution of polythene waste. Ten fungal strains were isolated from rotting polythene debris those are Penicillium chrysogenum, Rhizopus nigricans, Chaetomium murorum, Memnoniella echinata, Aspergillus fumigatus, Stachybotrys chartarum, Aspergillus niger, Chaetomium globosum, Aspergillus flavus and Fusarium oxysporum, in which Penicillium chrysogenum, Rhizopus nigricans, Aspergillus fumigatus, Aspergillus niger and Aspergillus flavus showed greatest results in terms of degrading both Low density polythene and biodegradable polythene. These isolates also showed good enzymatic reaction and weight loss. SEM analysis of polythene surface was also in support of these findings.
Show more [+] Less [-]Health Risks of Ecosystem Services in Ologe Lagoon, Lagos, Southwest Nigeria Full text
2022
Yahaya, Tajudeen | Muhammad, Alkali | Onyeziri, Joy Ada | Abdulazeez, Abdulmalik | Shemshere, Ufuoma | Bakare, Tayo | Yusha’u, Bello Kalgo
Ologe Lagoon is one of Lagos, Nigeria’s five major lagoons, which provide essential ecosystem services such as agriculture, fishing, transportation, salt and sand mining, tourism, and industrial development. There are concerns, however, that the lagoon’s water may not be safe for the ecosystem functions it offers. As a result, the physicochemical properties, heavy metal concentrations, and microbial loads of water samples from the lagoon, as well as their health risks, were examined in this study. Physicochemical analysis showed that calcium, chloride, nitrates, sulphate, dissolved oxygen, acidity, alkalinity, total dissolved solid, and total suspended solid were present within the World Health Organization permissible limits, but not so for phosphate and temperature. The heavy metal analysis revealed that the water had non-permissible levels of iron, cadmium, chromium, nickel, manganese, and copper, but lead was normal. The microbiological examination showed abnormal bacteria counts, while coliform and fungus were not detected. The average daily oral and dermal exposure to cadmium, chromium, and nickel were higher than the recommended daily intake, but iron, lead, and copper were within the limits. The hazard quotient of oral and dermal exposure to cadmium, dermal exposure to chromium, and oral exposure to manganese were higher than the recommended limit (> 1). The carcinogenic risks of Cd, Cr, and Ni were also greater than the acceptable limit. The results obtained indicate that Ologe Lagoon’s water is unsafe for the lagoon’s ecosystem functions. Relevant agencies should ensure that waste is treated before being discharged into the lagoon.
Show more [+] Less [-]Screening and Absolute Quantification of a β-lactamase Resistance Gene NDM-1 in Lake Sediment Full text
2022
Ranjan, Rajeev | Thatikonda, Shashidhar
New Delhi Metallo-β-lactamase-1(NDM-1) is an enzyme that hydrolyzes a wide range of β-lactams antibiotics, including carbapenems. The presence of the NDM-1 inhibits the potential of β–lactam antibiotics in treating infections caused by bacterial strains carrying such resistances, thus leaving minimal treatment options available. Due to this, the rapid distribution of NDM-1 harboring bacteria accounts for a significant public health menace worldwide. These bacteria have been detected in clinical specimens and environmental compartments where bacterial infections are ubiquitous. In this study, identification and absolute quantification of NDM-1 in sixteen lake sediment samples collected in and around Hyderabad, India, was carried out using a real-time quantitative polymerase chain reaction (qPCR), and the results were expressed in gene copy number/ng (nanogram) of template DNA. Thirteen samples (out of sixteen) displayed a positive signal for NDM-1 during the qPCR analysis with the highest gene copy number/ng of template DNA (71.8) being observed in the Amberpet STP. Three samples, samples from Durgamcheru lake, Kandi lake, and Singur dam, were negative for the NDM-1 during the qPCR analysis. Hierarchical clustering analysis was performed to categorize the sampling location into different clusters based on pollution sources and the observed results were expressed in the form of a dendrogram.
Show more [+] Less [-]Human health risk assessment via the consumption of platycephalus indicus in the Persian Gulf, Iran Full text
2022
Gholizadeh, Mohammad | Mohammadzadeh, Behroz | Kazemi, Ali
The assessment of human health risk associated with accumulation of lead, copper, zinc, nickel, and Arsenic in the muscle of bartail flathead (Platycephalus indicus) collected from Jofreh pier and Bushehr port, northwest of the Persian Gulf of Iran was examined. A total of 80 P. indicus were collected and analysed using ICP-OES from two seasons (summer and winter) of 2019; estimated daily intake (EDI), estimated weekly intake (EWI), target hazard quotient (THQ), hazard index (HI) and Carcinogenic risk (CR) were determined. The mean concentration (μg/g) range were observed as: zinc (16.37-50.17)> As (5.65-8.83)> Cu (2.19-3.63)> Pb (0.62-6.37)> Ni (0.17-1.08). Hazard index (HI) for adult and children during consumption of P.indicus was <1, the highest HI values were calculated for adults (0.06) in Bushehr and children (0.14) in Jofreh. The CR levels for Ni and Pb were within acceptable limits (10-6 to 10-4) and arsenic was unacceptable (> 10-4) at sampling sites.
Show more [+] Less [-]Assessment of the limnological characteristics of Lake Bosomtwe in the Ashanti Region of Ghana Full text
2022
Owusu-Boateng, Godfred | Ampofo-Yeboah, Akwasi | Agyemang, Thomas Kwaku | Sarpong, Kofi
The quality of the water from Lake Bosomtwe was assessed to aid in the conservation decision on the lake. Twenty-six parameters of physico-chemical, bacteriological, and organic effects and major and trace ions were evaluated using the principal component analysis. The levels of these parameters were also compared with surface water benchmarks of Ghana EPA, WHO, EU, US EPA and CCEM. As prescribed by the benchmarks of these regulatory bodies, the mean levels of temperature, pH, dissolved oxygen, total suspended solids, total dissolved solids, nitrates, phosphate, biochemical oxygen demand, chemical oxygen demand, total hardness, conductivity, alkalinity, turbidity and fluorine did not signal any lake pollution, but sulphate, total and faecal coliforms, chlorophyll-a, cadmium and mercury showed pollution tendencies. Temperature, pH, dissolved oxygen, total suspended solids, total dissolved solids, nitrates, phosphate, sulphate and total coliform bacteria were found to be the main parameters that drive 71.2% of the limnological characteristics of the lake water and deserve careful consideration in designing conservation strategies for the lake.
Show more [+] Less [-]Determination of Heavy metals in honey samples from different region of the north-east of Algeria: according to an urban gradient Full text
2022
Bouden, Mohammed Chafik | Belabed, Ibrahim Adnene
This study aims to assess the pollution of honey by heavy metals based on the efforts of an urbanization gradient in the city of Annaba (Northeast Algeria) where the dosage of five heavy metals (Fe, Cr, Ni, Cu, Cd) was carried out in four sites.The level of heavy metals was determined by atomic absorption spectrophotometer. The results obtained indicated that even when all the samples were contaminated they were of good quality since the concentrations did not exceed the international standards.According to the results of heavy metal concentrations in the honeys studied, the most abundant element is Fe with an average concentration of 6.956 ± 2.045 (mg/kg), Cr 0.765 ± 0.197 (mg/kg), Ni 0.6005 ± 0.159 (mg/kg), Cu 0.21025 ± 0.065 (mg/kg) and Cd 0.01425 ± 0.005 (mg/kg).The heavy metals studied are present in all samples but trace amounts. Moreover, the comparison of the honey from the four sites indicates to us that the healthiest honey is that of the urban site.
Show more [+] Less [-]