Refine search
Results 71-80 of 1,309
Bioremediation of benzene-, MTBE- and ammonia-contaminated groundwater with pilot-scale constructed wetlands
2011
Seeger, Eva M. | Kuschk, Peter | Fazekas, Helga | Grathwohl, Peter | Kaestner, Matthias
In this pilot-scale constructed wetland (CW) study for treating groundwater contaminated with benzene, MTBE, and ammonia-N, the performance of two types of CWs (a wetland with gravel matrix and a plant root mat) was investigated. Hypothesized stimulative effects of filter material additives (charcoal, iron(III)) on pollutant removal were also tested. Increased contaminant loss was found during summer; the best treatment performance was achieved by the plant root mat. Concentration decrease in the planted gravel filter/plant root mat, respectively, amounted to 81/99% for benzene, 17/82% for MTBE, and 54/41% for ammonia-N at calculated inflow loads of 525/603 mg/m²/d, 97/112 mg/m²/d, and 1167/1342 mg/m²/d for benzene, MTBE, and ammonia-N. Filter additives did not improve contaminant depletion, although sorption processes were observed and elevated iron(II) formation indicated iron reduction. Bacterial and stable isotope analysis provided evidence for microbial benzene degradation in the CW, emphasizing the promising potential of this treatment technique.
Show more [+] Less [-]Zinc accumulation and synthesis of ZnO nanoparticles using Physalis alkekengi L
2011
Qu, Jiao | Yuan, Xing | Wang, Xinhong | Shao, Peng
A field survey and greenhouse experiments were conducted using Physalis alkekengi L. to investigate strategies of phytoremediation. In addition, ZnO nanoparticles were synthesized using P. alkekengi. P. alkekengi plants grew healthily at Zn levels from 50 to 5000mgkg⁻¹ in soils. The plants incorporated Zn into their aerial parts (with mean dry weight values of 235–10,980mgkg⁻¹) and accumulated biomass (with a mean dry weight of 25.7gplant⁻¹) during 12 weeks. The synthesized ZnO nanoparticles showed a polydisperse behavior and had a mean size of 72.5nm. The results indicate that P. alkekengi could be used for the remediation of zinc-contaminated soils. Moreover, the synthetic method of synthesizing ZnO nanoparticles from Zn hyperaccumulator plants constitutes a new insight into the recycling of metals in plant sources.
Show more [+] Less [-]The effects of tertiary treated municipal wastewater on fish communities of a small river tributary in Southern Ontario, Canada
2011
Brown, Carolyn J.M. | Knight, Brendan W. | McMaster, Mark E. | Munkittrick, Kelly R. | Oakes, Ken D. | Tetreault, Grald R. | Servos, Mark R.
Fish community changes associated with a tertiary treated municipal wastewater effluent outfall in the Speed River, Ontario, Canada, were evaluated at nine sites over two seasons (2008) using standardized electrofishing. Habitat evaluations were conducted to ensure that the riffle sites selected were physically similar. The fish community was dominated by several species of darters that differed in their response to the effluent outfall. There was a significant decrease in Greenside Darter (Etheostoma blennioides) but an increase in Rainbow Darter (E. caeruleum) abundance directly downstream of the outfall. Stable isotope signatures (δ¹³C and δ¹⁵N), which indicate shifts in energy utilization and flow, increased in Rainbow Darter downstream, but showed no change in Greenside Darter. Rainbow Darter may be exploiting a food source that is not as available at upstream sites giving them a competitive advantage over the Greenside Darter immediately downstream of the outfall.
Show more [+] Less [-]Toxicity profile of labile preservative bronopol in water: The role of more persistent and toxic transformation products
2011
Cui, Na | Zhang, Xiaoxiang | Xie, Qing | Wang, Se | Chen, Jingwen | Huang, Liping | Qiao, Xianliang | Li, Xuehua | Cai, Xiyun
Transformation products usually differ in environmental behaviors and toxicological properties from the parent contaminants, and probably cause potential risks to the environment. Toxicity evolution of a labile preservative, bronopol, upon primary aquatic degradation processes was investigated. Bronopol rapidly hydrolyzed in natural waters, and primarily produced more stable 2-bromo-2-nitroethanol (BNE) and bromonitromethane (BNM). Light enhanced degradation of the targeted compounds with water site specific photoactivity. The bond order analysis theoretically revealed that the reversible retroaldol reactions were primary degradation routes for bronopol and BNE. Judging from toxicity assays and the relative pesticide toxicity index, these degradation products (i.e., BNE and BNM), more persistent and higher toxic than the parent, probably accumulated in natural waters and resulted in higher or prolonging adverse impacts. Therefore, these transformation products should be included into the assessment of ecological risks of non-persistent and low toxic chemicals such as the preservative bronopol.
Show more [+] Less [-]The lack of microbial degradation of polycyclic aromatic hydrocarbons from coal-rich soils
2011
Achten, Christine | Cheng, Shubo | Straub, Kristina L. | Hofmann, Thilo
Analytical techniques used to assess the environmental risk of contamination from polycyclic aromatic hydrocarbons (PAHs) typically consider only abiotic sample parameters. Supercritical fluid extraction and sorption enthalpy experiments previously suggested slow desorption rates for PAH compounds in two coal-contaminated floodplain soils. In this study, the actual PAH availability for aerobic soil microorganisms was tested in two series of soil-slurry experiments. The experimental conditions supported microbial degradation of phenanthrene if it was weakly sorbed onto silica gel. Native coals and coal-derived particles in two soils effectively acted as very strong sorbents and prevented microbial PAH degradation. The long history of PAH exposure and degree of coal contamination apparently had no influence on the capability of the microbial soil community to overcome constraints of PAH availability. Within the context of the experimental conditions and the compounds chosen, our results confirm that coal-bound PAHs are not bioavailable and hence of low environmental concern.
Show more [+] Less [-]Mercury cycling and sequestration in salt marshes sediments: An ecosystem service provided by Juncus maritimus and Scirpus maritimus
2011
Marques, B. | Lillebø, A.I. | Pereira, E. | Duarte, A.C.
In this study two time scales were looked at: a yearlong study was completed, and a 180-day decay experiment was done. Juncus maritimus and Scirpus maritimus have different life cycles, and this seems to have implications in the Hg-contaminated salt marsh sediment chemical environment, namely Eh and pH. In addition, the belowground biomass decomposition rates were faster for J. maritimus, as well as the biomass turnover rates. Results show that all these species-specific factors have implications in the mercury dynamics and sequestration. Meaning that J. maritimus belowground biomass has a sequestration capacity for mercury per square metre approximately 4–5 times higher than S. maritimus, i.e., in S. maritimus colonized areas Hg is more extensively exchange between belowground biomass and the rhizosediment. In conclusion, J. maritimus seems to provide a comparatively higher ecosystem service through phytostabilization (Hg complexation in the rhizosediment) and through phytoaccumulation (Hg sequestration in the belowground biomass).
Show more [+] Less [-]Distribution and accumulation of endocrine-disrupting chemicals and pharmaceuticals in wastewater irrigated soils in Hebei, China
2011
Chen, Feng | Ying, Guang-Guo | Kong, Ling-Xiao | Wang, Li | Zhao, Jian-Liang | Zhou, Li-Jun | Zhang, Li-Juan
This study investigated the occurrence of 43 emerging contaminants including 9 endocrine-disrupting chemicals and 34 pharmaceuticals in three sites in Hebei Province, north China. Each site has a wastewater irrigated plot and a separate groundwater irrigated plot for comparison purpose. The results showed that the concentrations of the target compounds in the wastewater irrigated soils were in most cases higher than those in the groundwater irrigated soils. Among the 43 target compounds, nine compounds bisphenol-A, triclocarban, triclosan, 4-nonylphenol, salicylic acid, oxytetracycline, tetracycline, trimethoprim and primidone were detected at least once in the soils. Preliminary environmental risk assessment showed that triclocarban might pose high risks to terrestrial organisms while the other detected compounds posed minimal risks. Irrigation with wastewater could lead to presence or accumulation of some emerging contaminants to some extent in irrigated soils.
Show more [+] Less [-]The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants
2011
Zeng, Fanrong | Ali, Shafaqat | Zhang, Haitao | Ouyang, Younan | Qiu, Boyin | Wu, Feibo | Zhang, Guoping
The experiments were done to investigate the effect of soil pH and organic matter content on EDTA-extractable heavy metal contents in soils and heavy metal concentrations in rice straw and grains. EDTA-extractable Cr contents in soils and concentrations in rice tissues were negatively correlated with soil pH, but positively correlated with organic matter content. The combination of soil pH and organic matter content would produce the more precise regression models for estimation of EDTA-Cu, Pb and Zn contents in soils, demonstrating the distinct effect of the two factors on the availability of these heavy metals in soils. Soil pH greatly affected heavy metal concentrations in rice plants. Furthermore, inclusion of other soil properties in the stepwise regression analysis improved the regression models for predicting straw Fe and grain Zn concentrations, indicating that other soil properties should be taken into consideration for precise predicting of heavy metal concentrations in rice plants.
Show more [+] Less [-]Quantification of net carbon flux from plastic greenhouse vegetable cultivation: A full carbon cycle analysis
2011
Wang, Yan | Xu, Hao | Wu, Xu | Zhu, Yimei | Gu, Baojing | Niu, Xiaoyin | Liu, Anqin | Peng, Changhui | Ge, Ying | Chang, Jie
Plastic greenhouse vegetable cultivation (PGVC) has played a vital role in increasing incomes of farmers and expanded dramatically in last several decades. However, carbon budget after conversion from conventional vegetable cultivation (CVC) to PGVC has been poorly quantified. A full carbon cycle analysis was used to estimate the net carbon flux from PGVC systems based on the combination of data from both field observations and literatures. Carbon fixation was evaluated at two pre-selected locations in China. Results suggest that: (1) the carbon sink of PGVC is 1.21 and 1.23 Mg C ha⁻¹ yr⁻¹ for temperate and subtropical area, respectively; (2) the conversion from CVC to PGVC could substantially enhance carbon sink potential by 8.6 times in the temperate area and by 1.3 times in the subtropical area; (3) the expansion of PGVC usage could enhance the potential carbon sink of arable land in China overall.
Show more [+] Less [-]Spatial and seasonal variations of polycyclic aromatic hydrocarbons in Haihe Plain, China
2011
Wang, Rong | Cao, Hongying | Li, Wei | Wang, Wei | Wang, Wentao | Zhang, Liwen | Liu, Jiumeng | Ouyang, Huiling | Tao, Shu
A dynamic fugacity model was developed to simulate the spatial and seasonal variations of PAHs in Haihe Plain, China. The calculated and measured concentrations exhibited good consistency in magnitude with deviations within a factor of 4 in air and 2 in soil. The spatial distributions of PAHs in air were mainly controlled by emission while the seasonal variations were dominated by emission and gas–particle partition. In soil, the spatial distributions of PAHs were controlled by the soil organic carbon content while the seasonal variations were insignificant. The severest soil contamination was observed in Shanxi and followed by the southwest of Hebei province. Transfer fluxes of total PAHs between air and soil were calculated. The spatial distribution of air-to-soil flux was closely related to the landcover while the soil-to-air flux changed with soil organic matter content. Monte Carlo simulation was done to evaluate the uncertainty of the estimated results in air.
Show more [+] Less [-]