Refine search
Results 71-80 of 7,337
Heavy Metal Pollution in Soils and Vegetables from Suburban Regions of Nairobi, Kenya and their Community Health Implications Full text
2022
Nyika, Joan | Dinka, Megersa
This study aimed at quantifying the heavy metal levels in soils and vegetables sampled from five suburban regions of Nairobi, Kenya. Using inductively coupled plasma- mass spectrometry (ICP-MS) the metals were quantified from the samples. The assayed heavy metals including Cd, Cr, Co. Cu, Fe, Hg, Mn, Ni, Pb, Zn and the metalloid arsenic were elevated beyond the reference values in both soils and vegetables. High pollutant levels in soils were affiliated to use of industrial and domestic wastewater for irrigation, application of heavy metal containing agrochemicals and geogenic sources of the pollutants. In collard leaves, the uptake of contaminated water via the roots and subsequent accumulation in the leaves was attributable to the observed results. The total hazard quotient (THQ) and hazard index (HI) as a result of arsenic and Hg was >1 in all sampled sites and >10, respectively for both indices and heavy metals. Similarly, the cancer risk (CR) and target cancer risk (TCR) from consumption of collard was greater than the recommended levels of 10-6 and 10-4, respectively with exception of Pb. The indices were indicative of negative non-carcinogenic and carcinogenic effects of consuming the vegetables to the community of the study area. The results of the study, though preliminary, suggest the need to safeguard the health of communities in the study area to ensure that they do not consume heavy metal contaminated vegetables due to the established health effects of such pollutants.
Show more [+] Less [-]Modeling DO and BOD5 Changes in the Dez River by Using QUAL2Kw Full text
2022
Jamalianzadeh, Seyyad Fazlodin | Rabieifar, Hamidreza | Afrous, Ali | Hosseini, Azim | Ebrahimi, Hossein
The present study evaluates the water quality of Dez River, a river 23 km long, via QUAL2Kw model, based on simulation of DO and BOD5 p98arameters, through considering water quality standards during six months in three stations of Kashefieh, Pole-Panjom, and Hamidabad. To determine the model’s validity and compare the observational data, the paper uses the square mean square error (RMES) and the squared mean square error coefficient (CV). The achieved results of the model largely indicate the actual conditions of the river, which represent the ability of QUAL2Kw model to simulate qualitative parameters. The main contamination of Dez River comes from municipal wastewater, either directly imported by river residents or collected by urban canals. It, then, enters the river at a certain point. Based on the simulation and observational results of DO at two stations of 5th and Hamidabad Bridge in all months of sampling, it is below 5 mg/L, regarded a threat to aquatic life. In addition, BOD5 parameter goes beyond 6 mg/L in Hamidabad station, being a threatening factor for aquatic life in this station. Critical conditions of Dez River, low discharge, and high loading of pollutants have increased the concentration of water quality parameters. Given the results of RMSE and CV parameters, the model has had the best conformity for DO parameter, followed by BOD5.
Show more [+] Less [-]Presence of Microplastics in Freshwater Ecosystems: An Unheeded Emerging Concern – A Global Review Full text
2022
Mukhopadhyay, Patralika | Arkkakadavil Valsalan, Shibu
Plastic production has inevitably increased in the past few decades and is one of the diverse material used in today’s world. With this increasing production and wider use, the aquatic ecosystems have become the trash barrel for all kinds of plastic resulting in it becoming a looming spectre to the habitat and functions of both inland and offshore ecosystems. Plastic pollution is considered as an emerging global environmental concern which could significantly affect the biological diversity and may have potential to cause inimical effects on human health. These plastics have shown to gradually degrade into micro fragments and are reported to cause toxic effects on the aquatic organisms. In comparison to the studies on presence of microplastic in marine ecosystems, the studies on the presence of it in freshwater ecosystems have received relatively lesser attention although some studies have shown that the contamination is as grievous as that of in marine environment. This review article focuses on the literature available on the reports of microplastic occurrence, its distribution in freshwater ecosystems across the world and its insidious effects which are of emerging concern. The effect of such microplastic ingestion in both aquatic organisms and the potential health hazards due to such plastic consumption in humans have also been examined. The paper also discusses the existing knowledge gaps so that future research directions can be taken accordingly and the findings in this paper would significantly help all the countries across the world to understand the present plastic pollution scenario and work towards the mitigation of the same.
Show more [+] Less [-]Nanocomposites for Packaging Applications: Synthesis, Characterization, Thermal and Microbial Degradation of Its Residues for Plant Growth Full text
2022
Abbasi, Zahra | Motamedi, Hossein | Zirrahi, Zinat | Taghavi, Mehdi | Farrokhnia, Abdolhadi | Aghaie, Ermia | Behnamian, Yashar
Environmental pollution, caused by traditional plastic packaging, has recently become more severe due to non-biodegradable nature of petroleum-based plastics. The present research studies the preparation of polyvinyl alcohol (PVOH)/Starch (ST)/Humic Acid (HA) contained sodium montmorillonite clay (MMT) as a plastic packaging method. It also investigates biodegradability of films in terms of microbial and thermal degradation and their residual effect on plant growth. For doing so, the research utilizes Broido Technique to obtain the activation energy of the films’ thermal degradation. The influence of HA/MMT ratio on the surface morphology and physical characteristics has also been assessed, using the Fourier Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscope (SEM), and thermogravimetric analysis (TA). After 12 days of microbial degradation, the total remaining solids are 32.12 wt% (PVOH/ST/HA (3%)/MMT (1%)); 48.17 wt% (PVOH/ST/HA (3%)/MMT (3%)), and 58.82 wt% (PVOH/ST/HA (1%)/MMT (3%)). The research shows that the highest activation energy for PVOH/ST/HA (3%)/MMT (3%) is 75 kJ/mol.
Show more [+] Less [-]Biosorption of Chromium by Fungal Strains Isolated from Industrial Effluent Contaminated Area Full text
2022
Narolkar, Swati | Mishra, Arvnabh
The ability of fungi to act as bio-sorbent had been extensively evaluated and has shown excellent metal sequestering ability for heavy metals such as cadmium, copper, zinc, lead, iron, nickel, radium, thorium, and uranium from aqueous solution. In the present study, tolerance, removal efficiency and adsorption capacity of hexavalent chromium using isolated fungal strains were analysed. Total nine fungal isolates were obtained from organic pollutants and metals contaminated Gujarat Industrial Development Cooperation sites. Filamentous fungi isolated belonged to Aspergillus spp., Rhizopus spp., Trichoderma spp., and Penicillium spp. Chromium sorption experiments using isolated fungal strains were carried out to check adsorption capacity and adsorption intensity. At higher chromium concentration, removal efficiency and adsorption capacity were observed in the order of Aspergills candidus > Aspergillus ochraceus > Aspergillus flavus > Rhizopus spp. > Trichoderma spp. A. candidus showed higher adsorption capacity, 5.49mg/g with 98.75% chromium removal efficiency at 150ppm of hexavalent chromium. The observed RL value for Langmuir isotherm for all the three concentrations was less than 1, depicting favourable sorption and in Freundlich isotherm, the value of 1/n exceeds more than 1 showing co-operative or similar type of adsorption.
Show more [+] Less [-]Annual Effective Dose Assessment of Radon in Drinking Water from Abandoned Tin and Cassiterite Mining Site in Oyun, Kwara State, Nigeria Full text
2022
Orosun, Muyiwa Michael | Ajibola, Taiye Benjamin | Ehinlafa, Olusegun Emmanuel | Issah, Ahmad Kolawole | Salawu, Banji Naheem | Ishaya, Sunday Danladi | Ochommadu, Kelechi Kingsley | Adewuyi, Abayomi Daniel
Mining activities are generally known to enhance the concentration of primordial radionuclides in the environment thereby contributing immensely to human exposure to ionizing radiation of terrestrial origin. Thus, the abandoned Tin and Cassiterite mining site in Oyun, Kwara State, Nigeria, is believed to cause radiological implications on local residents. Assessment of radon concentration in surface water from the study area was carried out using RAD7-Active Electronic detector big bottle system. In order to ascertain the risk or hazard incurable in consuming such water, 12 samples were analysed and used in the estimation of annual effective dose of radon. The measured maximum and minimum radon concentrations were found to be 44.95 and 21.03 Bq/L with average of 35.86 Bq/L. These values are quite greater than the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) recommended limits of 11.1.Bq/L. The estimated total effective dose (AEDEtotal) was found to be within the range of 206.52 and 441.41 μSvy-1, and an average of 352.20 μSvy-1 for Adults, 283.30 and 605.47 μSvy-1, and average of 483.10 μSvy-1 for Children, and finally, 321.70 and 687.47 μSvy-1 with average of 548.64 μSvy-1 for Infants, respectively. These values were higher than the recommended limit of 100 µSvy-1 and 200 µSvy-1 for adult and children respectively. Furthermore, worries should be noted about the probabilistic cumulative effect on the consumers of such water if the ingestion is for an extended period of time.
Show more [+] Less [-]Modelling the Effect of Temperature Increments on Wildfires Full text
2022
Sadat Razavi, Amir Hossein | Shafiepour Motlagh, Majid | Noorpoor, Alireza | Ehsani, Amir Houshang
Global fire cases in recent years and their vast damages are vivid reasons to study the wildfires more deeply. A 25-year period natural wildfire database and a wide array of environmental variables are used in this study to develop an artificial neural network model with the aim of predicting potential fire spots. This study focuses on non-human reasons of wildfires (natural) to compute global warming effects on wildfires. Among the environmental variables, this study shows the significance of temperature for predicting wildfire cases while other parameters are presented in a next study. The study area of this study includes all natural forest fire cases in United States from 1992 to 2015. The data of eight days including the day fire occurred and 7 previous days are used as input to the model to forecast fire occurrence probability of that day. The climatic inputs are extracted from ECMWF. The inputs of the model are temperature at 2 meter above surface, relative humidity, total pressure, evaporation, volumetric soil water layer, snow melt, Keetch–Byram drought index, total precipitation, wind speed, and NDVI. The results show there is a transient temperature span for each forest type which acts like a threshold to predict fire occurrence. In temperate forests, a 0.1-degree Celsius increase in temperature relative to 7-day average temperature before a fire occurrence results in prediction model output of greater than 0.8 for 4.75% of fire forest cases. In Boreal forests, the model output for temperature increase of less than 1 degree relative to past 7-day average temperature represents no chance of wildfire. But the non-zero fire forest starts at 2 degrees increase of temperature which ends to 2.62% of fire forest cases with model output of larger than 0.8. It is concluded that other variables except temperature are more determinant to predict wildfires in temperate forests rather than in boreal forests.
Show more [+] Less [-]Biosorption Potential of Saraca asoca Bark Powder for Removal of Cr (VI) Ions from Aqueous Solution Full text
2022
Lall, Anurag Samson | Pandey, Avinash Kumar | Mani, Jyoti Vandana
Saraca asoca bark has long been used in traditional Indian medicine. Considering its low cost and non-toxic nature, it can find application as a biosorbent. This article explores the application of Saraca asoca bark powder (SABP) for biosorption of hexavalent chromium. Various analytical techniques including Field emission scanning electron microscope (FESEM) attached with energy dispersive spectrometer (EDS), Fourier transform infrared spectroscopy (FTIR) and point of zero charge (pHpzc) were adopted in order to identify the physico-chemical features of SABP. Factors such as pH (2-8), contact time (for 3 hours), initial Cr (VI) concentration (10 – 250 mg/l) and temperature (15 - 35°C) were examined for their influence on Cr (VI) biosorption via batch studies. Biosorption data clearly followed Redlich-Peterson isotherm model as compared to Langmuir and Freundlich models. The Langmuir monolayer adsorption capacities (Qm) at 15, 25 and 35°C were 123.4, 125.0 and 175.4 mg/g respectively. Biosorption followed pseudo-second-order kinetics and the mechanism of diffusion was governed by both surface sorption and pore diffusion as demonstrated by the plot for Intraparticle diffusion model and the pore diffusion coefficient (Dp~10-9 cm2/s). The nature of biosorption was found to be spontaneous and endothermic as reflected through various thermodynamic parameters such as the free energy change (ΔG = -3.0 to -3.7 kJ/mol), entropy change (ΔS = 37.8 J/K/mol) and enthalpy change (ΔH = 7.9 kJ/mol). The study recommends that SABP may be utilized as a potential biosorbent for Cr(VI) ions.
Show more [+] Less [-]Synthesis and Characterization of Fe3O4- SiO2 Nanoparticles as Adsorbent Material for Methyl Blue Dye Removal from Aqueous Solutions Full text
2022
Mohammed Ali, Nisreen Sabti | Alalwan, Hayder A. | Alminshid, Alaa H. | Mohammed, Malik M.
In this work, Fe3O4-SiO2 nanoparticles were synthesized, characterized, and applied as adsorbent material to remove methyl blue stain from an aqueous solution. The prepared nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and Brunauer–Emmett–Teller (BET) to determine the physical surface properties and correlate them to the adsorption efficiency. In addition, this study investigated the influence of several parameters on the removal percentage and adsorption capacity. Specifically, this study investigated the impact of changing the following parameters: pH (1 – 8), agitation speed (Uspeed; 100 - 350 rpm), initial methyl blue (MB) concentration (1 - 100 mg/L), adsorbent dose (0.05 to 0.15 g), and contact time (10 - 100 min). The characterization study reveals that the prepared material has an excellent surface area (385 ± 5 m2/g) and pore volume (0.31 cm3/g) which enhances the adsorption capacity. In addition, the prepared material showed excellent efficiency where the removal percentage reached 99.0±1% at the optimal operating conditions and the maximum adsorption capacity was 40 mg/g. This study delivers a full elucidation of the adsorption of MB dye by Fe3O4-SiO2 NPs which considers a promising inexpensive adsorbent. It also delivers important insight information about the adsorption process and the influence of each parameter, which fill the lack in this field.
Show more [+] Less [-]Daily and Seasonal Variation of Aerosol Optical Depth and Angstrom Exponent over Ethiopia using MODIS Data Full text
2022
Eshet, Asmarech | Raju, Jaya Prakash
Aerosols are tiny particles (liquid or solid) suspended in the atmosphere. They play a significant rolein climate dynamics directly or indirectly. Aerosol Optical Depth (AOD) and Angstrom Exponent(AE) are significant parameters to study the concentration and size or type of aerosol over an area,respectively. In this article, we utilized three years of AOD and AE parameters derived from moderateresolution imaging spectroradiometer (MODIS) satellite during the period January, 2013 to December,2015 over Ethiopia. In order to study the spatiotemporal pattern of aerosols, we choose three areas(Debretabour, Gojjam and Addis Ababa) over Ethiopian highlands, which are representative of nonindustrial, agricultural and industrial areas respectively. Further we compare continental aerosols withmarine aerosols from Djibouti. Our results clearly depicts the aerosol distribution over Ethiopia ishighly variable spatially and temporally. The results indicates that the urban and biomass aerosols aredominate over Addis Ababa, and Gojjam respectively, whereas dust and biomass aerosols are presentover Debretabour, while Djibouti is loaded by sea spray aerosols. The seasonal variability of AOD isfound to be maximum during the kiremt (summer) and minimum during bega (winter) over all areas(continental and marine).
Show more [+] Less [-]