Refine search
Results 701-710 of 5,149
NMR-based metabolic toxicity of low-level Hg exposure to earthworms Full text
2018
Tang, Ronggui | Ding, Changfeng | Dang, Fei | Ma, Yibing | Wang, Junsong | Zhang, Taolin | Wang, Xingxiang
Mercury is a globally distributed toxicant to aquatic animals and mammals. However, the potential risks of environmental relevant mercury in terrestrial systems remain largely unclear. The metabolic profiles of the earthworm Eisenia fetida after exposure to soil contaminated with mercury at 0.77 ± 0.09 mg/kg for 2 weeks were investigated using a two-dimensional nuclear magnetic resonance-based (¹H-¹³C NMR) metabolomics approach. The results revealed that traditional endpoints (e.g., mortality and weight loss) did not differ significantly after exposure. Although histological examination showed sub-lethal toxicity in the intestine as a result of soil ingestion, the underlying mechanisms were unclear. Metabolite profiles revealed significant decreases in glutamine and 2-hexyl-5-ethyl-3-furansulfonate in the exposed group and remarkable increases in glycine, alanine, glutamate, scyllo-inositol, t-methylhistidine and myo-inositol. More importantly, metabolic network analysis revealed that low mercury in the soil disrupted osmoregulation, amino acid and energy metabolisms in earthworms. A metabolic net link and schematic diagram of mercury-induced responses were proposed to predict earthworm responses after exposure to mercury at environmental relevant concentrations. These results improved the current understanding of the potential toxicity of low mercury in terrestrial systems.
Show more [+] Less [-]An empirical model to predict road dust emissions based on pavement and traffic characteristics Full text
2018
Padoan, Elio | Ajmone-Marsan, Franco | Querol, X. (Xavier) | Amato, F. (Fulvio)
The relative impact of non-exhaust sources (i.e. road dust, tire wear, road wear and brake wear particles) on urban air quality is increasing. Among them, road dust resuspension has generally the highest impact on PM concentrations but its spatio-temporal variability has been rarely studied and modeled. Some recent studies attempted to observe and describe the time-variability but, as it is driven by traffic and meteorology, uncertainty remains on the seasonality of emissions. The knowledge gap on spatial variability is much wider, as several factors have been pointed out as responsible for road dust build-up: pavement characteristics, traffic intensity and speed, fleet composition, proximity to traffic lights, but also the presence of external sources. However, no parameterization is available as a function of these variables.We investigated mobile road dust smaller than 10 μm (MF10) in two cities with different climatic and traffic conditions (Barcelona and Turin), to explore MF10 seasonal variability and the relationship between MF10 and site characteristics (pavement macrotexture, traffic intensity and proximity to braking zone). Moreover, we provide the first estimates of emission factors in the Po Valley both in summer and winter conditions. Our results showed a good inverse relationship between MF10 and macro-texture, traffic intensity and distance from the nearest braking zone. We also found a clear seasonal effect of road dust emissions, with higher emission in summer, likely due to the lower pavement moisture. These results allowed building a simple empirical mode, predicting maximal dust loadings and, consequently, emission potential, based on the aforementioned data. This model will need to be scaled for meteorological effect, using methods accounting for weather and pavement moisture. This can significantly improve bottom-up emission inventory for spatial allocation of emissions and air quality management, to select those roads with higher emissions for mitigation measures.
Show more [+] Less [-]Air pollution over the North China Plain and its implication of regional transport: A new sight from the observed evidences Full text
2018
High concentrations of the fine particles (PM₂.₅) are frequently observed during all seasons over the North China Plain (NCP) region in recent years. In NCP, the contributions of regional transports to certain area, e.g. Beijing city, are often discussed and estimated by models when considering an effective air pollution controlling strategy. In this study, we selected three sites from southwest to northeast in NCP, in which the concentrations of air pollutants displayed a multi-step decreasing trend in space. An approach based on the measurement results at these sites has been developed to calculate the relative contributions of the minimal local emission (MinLEC) and the maximum regional transport (MaxRTC) to the air pollutants (e.g., SO₂, NO₂, CO, PM₂.₅) in Beijing. The minimal influence of local emission is estimated by the difference of the air pollutants' concentrations between urban and rural areas under the assumption of a similar influence of regional transport. Therefore, it's convenient to estimate the contributions of local emission from regional transport based on the selective measurement results instead of the complex numerical model simulation. For the whole year of 2013, the averaged contributions of MinLEC (MaxRTC) for NO₂, SO₂, PM₂.₅ and CO are 61.7% (30.7%), 46.6% (48%), 52.1% (40.2%) and 35.8% (45.5%), respectively. The diurnal variation of MaxRTC for SO₂, PM₂.₅ and CO shows an increased pattern during the afternoon and reached a peak (more than 50%) around 18:00, which indicates that the regional transport is the important role for the daytime air pollution in Beijing.
Show more [+] Less [-]Current and historical concentrations of poly and perfluorinated compounds in sediments of the northern Great Lakes – Superior, Huron, and Michigan Full text
2018
Current and historical concentrations of 22 poly- and perfluorinated compounds (PFASs) in sediment collected from Lake Superior and northern Lake Michigan in 2011 and Lake Huron in 2012 are reported. The sampling was performed in two ways, Ponar grabs of surface sediments for current spatial distribution across the lake and dated cores for multi-decadal temporal trends. Mean concentrations of the sum of PFASs (∑PFASs) were 1.5, 4.6 and 3.1 ng g−1 dry mas (dm) in surface sediments for Lakes Superior, Michigan and Huron, respectively. Of the five Laurentian Lakes, the watersheds of Superior and Huron are the less densely populated by humans, and concentrations observed were typically less and from more diffuse sources, due to lesser urbanization and industrialization. However, some regions of greater concentrations were observed and might indicate more local, point sources. In core samples concentrations ranged from <LOQ to 46.6 ng g−1 dm among the three lakes with concentrations typically increasing with time. Distributions of PFASs within dated cores largely corresponded with increase in use of PFASs, but with physiochemical characteristics also affecting distribution. Perfluoroalkyl sulfonates (PFSAs) with chain lengths >7 that include perfluoro-n-octane sulfonate (PFOS) bind more strongly to sediment, which resulted in more accurate analyses of temporal trends. Shorter-chain PFASs, such as perfluoro-n-butanoic acid which is the primary replacement for C8 PFASs that have been phased out, are more soluble and were identified in some core layers at depths corresponding to pre-production periods. Thus, analyses of temporal trends of these more soluble compounds in cores of sediments were less accurate. Total elemental fluorine (TF) and extractable organic fluorine (EOF) indicated that identified PFASs were not a significant fraction of fluorine containing compounds in sediment (<0.01% in EOF).
Show more [+] Less [-]Source apportionment of fine particulate matter organic carbon in Shenzhen, China by chemical mass balance and radiocarbon methods Full text
2018
Al-Naiema, Ibrahim M. | Yoon, Subin | Wang, Yu-Qin | Zhang, Yuan-Xun | Sheesley, Rebecca J. | Stone, Elizabeth A.
Chemical mass balance (CMB) modeling and radiocarbon measurements were combined to evaluate the sources of carbonaceous fine particulate matter (PM2.5) in Shenzhen, China during and after the 2011 summer Universiade games when air pollution control measurements were implemented to achieve air quality targets. Ambient PM2.5 filter samples were collected daily at two sampling sites (Peking University Shenzhen campus and Longgang) over 24 consecutive days, covering the controlled and uncontrolled periods. During the controlled period, the average PM2.5 concentration was less than half of what it was after the controls were lifted. Organic carbon (OC), organic molecular markers (e.g., levoglucosan, hopanes, polycyclic aromatic hydrocarbons), and secondary organic carbon (SOC) tracers were all significantly lower during the controlled period. After pollution controls ended, at Peking University, OC source contributions included gasoline and diesel engines (24%), coal combustion (6%), biomass burning (12.2%), vegetative detritus (2%), biogenic SOC (from isoprene, α-pinene, and β-caryophyllene; 7.1%), aromatic SOC (23%), and other sources not included in the model (25%). At Longgang after the controls ended, similar source contributions were observed: gasoline and diesel engines (23%), coal combustion (7%), biomass burning (17.7%), vegetative detritus (1%), biogenic SOC (from isoprene, α-pinene, and β-caryophyllene; 5.3%), aromatic SOC (13%), and other sources (33%). The contributions of the following sources were smaller during the pollution controls: biogenic SOC (by a factor of 10–16), aromatic SOC (4–12), coal combustion (1.5–6.8), and biomass burning (2.3–4.9). CMB model results and radiocarbon measurements both indicated that fossil carbon dominated over modern carbon, regardless of pollution controls. However, the CMB model needs further improvement to apportion contemporary carbon (i.e. biomass burning, biogenic SOC) in this region. This work defines the major contributors to carbonaceous PM2.5 in Shenzhen and demonstrates that control measures for primary emissions could significantly reduce secondary organic aerosol (SOA) formation.
Show more [+] Less [-]Manganese accumulates in the brain of northern quolls (Dasyurus hallucatus) living near an active mine Full text
2018
Amir Abdul Nasir, Ami Fadhillah | Cameron, Skye F. | von Hippel, Frank A. | Postlethwait, John | Niehaus, Amanda C. | Blomberg, Simon | Wilson, Robbie S.
Mining is fundamental to the Australian economy, yet little is known about how potential contaminants bioaccumulate and affect wildlife living near active mining sites. Here, we show using air sampling that fine manganese dust within the respirable size range is found at levels exceeding international recommendations even 20 km from manganese extraction, processing, and storage facilities on Groote Eylandt, Northern Territory. Endangered northern quolls (Dasyurus hallucatus) living near mining sites were found to have elevated manganese concentrations within their hair, testes, and in two brain regions—the neocortex and cerebellum, which are responsible for sensory perception and motor function, respectively. Accumulation in these organs has been associated with adverse reproductive and neurological effects in other species and could affect the long-term population viability of northern quolls.
Show more [+] Less [-]Effects of a complex contaminant mixture on thyroid hormones in breeding hooded seal mothers and their pups Full text
2018
Grønnestad, Randi | Villanger, Gro D. | Polder, Anuschka | Kovacs, Kit M. | Lydersen, Christian | Jenssen, Bjørn M. | Borgå, Katrine
Effects of a complex contaminant mixture on thyroid hormones in breeding hooded seal mothers and their pups Full text
2018
Grønnestad, Randi | Villanger, Gro D. | Polder, Anuschka | Kovacs, Kit M. | Lydersen, Christian | Jenssen, Bjørn M. | Borgå, Katrine
There is a general lack of information on the possible effects of perfluoroalkyl substances (PFASs) on thyroid hormones (THs) in wildlife species. The effects of PFASs, which are known endocrine disruptors, on the TH homeostasis in hooded seals (Cystophora cristata) have yet to be investigated. Previously, correlations were found between plasma thyroid hormone (TH) concentrations in hooded seals, and organohalogen contaminants (OHCs) and hydroxyl (OH)-metabolites. Because animals are exposed to multiple contaminants simultaneously in nature, the effects of the complex contaminant mixtures that they accumulate should be assessed. Herein, we analyse relationships between plasma concentrations of multiple contaminants including protein-associated PFASs, hydroxylated metabolites of polychlorinated biphenyls (OH-PCBs) and lipid soluble OHCs and plasma concentrations of free and total THs, i.e. triiodothyronine (FT3, TT3) and thyroxine (FT4, TT4) in hooded seal mothers and their pups. The perfluoroalkyl carboxylates (PFCAs) were the most important predictors for FT3 concentrations and TT3:FT3 ratios in the mothers. The FT3 levels decreased with increasing PFCA levels, while the TT3:FT3 ratios increased. In the pups, hexachlorocyclohexanes (HCHs) were the most important predictors for TT3:FT3 ratios, increasing with increasing HCHs levels. Additionally, perfluoroalkyl sulfonates (PFSAs) and PFCAs were important predictors for FT4:FT3 ratios in hooded seal pups, and the ratio increased with increasing concentrations. The study suggests that PFASs contribute to thyroid disruption in hooded seals exposed to complex contaminant mixtures that include chlorinated and fluorinated organic compounds.
Show more [+] Less [-]Effects of a complex contaminant mixture on thyroid hormones in breeding hooded seal mothers and their pups Full text
2018
Improving air quality in subway systems: An overview Full text
2018
Moreno, Teresa | de Miguel, Eladio
This article comments on the current reality of particulate matter (PM) concentrations breathed by commuters on subway train platforms and considers what can be done to improve air quality underground. We propose the introduction of a targeted, color-coded approach to the problem, based on the methodology of the World Health Organisation and designed to encourage transport authorities to aim for progressive PM reductions. The method defines thresholds that cascade down through bands of decreasing PM concentrations towards the ideal WHO Air Quality Guideline of PM₂.₅ annual mean level of 10 μg m⁻³, where negative health effects of long term particle inhalation are minimal.
Show more [+] Less [-]Soil degassing during watering: An overlooked soil N2O emission process Full text
2018
Xu, Junzeng | Wei, Qi | Yang, Shihong | Liao, Linxian | Qi, Zhiming | Wang, Weiguang
Pulse diffusive nitrous oxide (N₂O) emission following water application is well documented, whereas N₂O emission caused by soil water-air displacement during the watering process (termed as soil degassing) has been largely overlooked. Watering-induced N₂O emissions from ten different soils in China were quantified, and found to range from 74.4 ± 6.7 to 678.1 ± 36.6 μg N₂O m⁻² h⁻¹ in surface watered (SW) soils, and from 45.6 ± 4.4 to 358.1 ± 23.6 μg N₂O m⁻² h⁻¹ in subsurface watered (SUW) soils. These N₂O fluxes were much larger than the diffusive N₂O flux from the same soil either under dry (7.9%–9.6% water filled pore space, WFPS) or wet (85.1%–93.6% WFPS) conditions. The watering process (the water infiltration process upon irrigation/rainfall or the process of shallow groundwater uplifting) resulted in massive N₂O emissions.
Show more [+] Less [-]Toxicological effects on earthworms (Eisenia fetida) exposed to sub-lethal concentrations of BDE-47 and BDE-209 from a metabolic point Full text
2018
Liang, Ruoyu | Chen, Juan | Shi, Yajuan | Lü, Yonglong | Sarvajayakesavalu, Suriyanarayanan | Xu, Xiangbo | Zheng, Xiaoqi | Kifāyatullāh, K̲h̲ān | Su, Chao
Earthworms improve the soil fertility and they are also sensitive to soil contaminants. Earthworms (Eisenia fetida), standard reference species, were usually chosen to culture and handle for toxicity tests. Metabolic responses in earthworms exposed to 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47) and decabromodiphenyl ether (BDE-209) were inhibitory and interfered with basal metabolism. In this study, 1H-NMR based metabolomics was used to identify sensitive biomarkers and explore metabolic responses of earthworms under sub-lethal BDE-47 and BDE-209 concentrations for 14 days. The results revealed that lactate was accumulated in earthworms exposed to BDE-47 and BDE-209. Glutamate increased significantly when the concentration of BDE-47 and BDE-209 reached 10 mg/kg. The BDE-47 exposure above 50 mg/kg concentration decreased the content of fumarate significantly, which was noticed different from that of BDE-209. Whereas, the BDE-207 or BDE-209 exposure increased the protein degradation into amino acids in vivo. The increased betaine content indicated that earthworms may maintain the cell osmotic pressure and protected enzyme activity by metabolic regulation. Moreover, the BDE-47 and BDE-209 exposure at 10 mg/kg changed most of the metabolites significantly, indicating that the metabolic responses were more sensitive than growth inhibition and gene expression. The metabolomics results revealed the toxic modes of BDE-47 and BDE-209 act on the osmoregulation, energy metabolism, nerve activities, tricarboxylic acid cycle and amino acids metabolism. Furthermore, our results highlighted that the 1H-NMR based metabolomics is a strong tool for identifying sensitive biomarkers and eco-toxicological assessment.
Show more [+] Less [-]