Refine search
Results 711-720 of 6,560
Liver-derived exosome-laden lncRNA MT1DP aggravates cadmium-induced nephrotoxicity Full text
2020
Gao, Ming | Dong, Zheng | Sun, Jinfang | Liu, Wei | Xu, Ming | Li, Changying | Zhu, Pan | Yang, Xingfeng | Shang, Xiaohong | Wu, Yongning | Liu, Sijin
Cadmium (Cd) is a well-characterized toxic heavy metal which could cause severe kidney injury. However, currently the knowledge of Cd toxicity towards kidney is still insufficient. Our previous data has identified that MT1DP (metallothionein 1D pseudogene) could promote Cd-induced detrimental effects on hepatocytes. Herein, we further found that MT1DP was also an important intermediate to aggravate Cd-induced nephrotoxicity. Through analyzing the data of 100 residents from Cd-contaminated area in Southern China, we found that the blood MT1DP levels correlated to the urine Cd content and the extent of nephrotoxicity. Although MT1DP was predominantly induced by hepatocytes in the liver, liver-secreted MT1DP was found to be packaged into extracellular cargoes: exosomes, by which MT1DP was delivered into circulation and thereafter targeted kidney cells. Furthermore, exosome-laden MT1DP worsened Cd-induced nephrotoxicity, as evidenced in both Cd-poisoned individuals and in vitro cells. Moreover, MT1DP was found to reinforce Cd-induced toxicity in kidney cells by indirectly breaking the equilibrium between the pro-apoptotic and anti-apoptotic effects conducted by BAX and Bcl-xL, respectively. Collectively, our data unveiled that hepatocyte-derived MT1DP depends on the delivery of exosomes to wreak considerable havoc in Cd nephrotoxicity. This study offers new insights into the molecular mechanisms of Cd-induced kidney injury.
Show more [+] Less [-]Effective treatment of levofloxacin wastewater by an electro-Fenton process with hydrothermal-activated graphite felt as cathode Full text
2020
Liu, Jia-Ming | Ji, Zhi-Yong | Shi, Ya-Bin | Yuan, Peng | Guo, Xiao-Fu | Zhao, Li-Ming | Li, Shuming | Li, Hong | Yuan, Jun-Sheng
The performance of the cathode significantly affects the ability of the electro-Fenton (EF) process to degrade chemicals. In this study, a simple method to modify the graphite felt (GF) cathode was proposed, i.e. oxidizing GF by hydrothermal treatment in nitric acid. The surface physical and electrochemical properties of modified graphite felt were characterized by several techniques: scanning electron microscope (SEM), water contact angle, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and linear scanning voltammetry (LSV). Compared with an unmodified GF (GF-0), the oxygen reduction reaction (ORR) activity of a modified GF was significantly improved due to the introduction of more oxygen-containing functional groups (OGs). Furthermore, the results showed that GF was optimally modified after 9 h (GF-9) of treatment. As an example, the H₂O₂ generation by GF-9 was 2.26 times higher than that of GF-0. After optimizing the process parameters, which include the initial Fe²⁺ concentration and current density, the apparent degradation rate constant of levofloxacin (LEV) could reach as high as 0.40 min⁻¹. Moreover, the total organic carbon (TOC) removal rate and mineralization current efficiency (MCE) of the modified cathode were much higher than that of the GF-0. Conclusively, GF-9 is a promising cathode for the future development in organic pollutant removal via EF.
Show more [+] Less [-]Gene expression response of the alga Fucus virsoides (Fucales, Ochrophyta) to glyphosate solution exposure Full text
2020
Gerdol, Marco | Visintin, Andrea | Kaleb, Sara | Spazzali, Francesca | Pallavicini, Alberto | Falace, Annalisa
Fucus virsoides is an ecologically important canopy-forming brown algae endemic to the Adriatic Sea. Once widespread in marine coastal areas, this species underwent a rapid population decline and is now confined to small residual areas. Although the reasons behind this progressive disappearance are still a matter of debate, F. virsoides may suffer, like other macroalgae, from the potential toxic effects of glyphosate-based herbicides.Here, through a transcriptomic approach, we investigate the molecular basis of the high susceptibility of this species to glyphosate solution, previously observed at the morphological and eco-physiological levels. By simulating runoff event in a factorial experiment, we exposed F. virsoides to glyphosate (Roundup® 2.0), either alone or in association with nutrient enrichment, highlighting significant alterations of gene expression profiles that were already visible after three days of exposure. In particular, glyphosate exposure determined the near-complete expression shutdown of several genes involved in photosynthesis, protein synthesis and stress response molecular pathways. Curiously, these detrimental effects were partially mitigated by nutrient supplementation, which may explain the survival of relict population in confined areas with high nutrient inputs.
Show more [+] Less [-]High temporal resolution measurements of ammonia emissions following different nitrogen application rates from a rice field in the Taihu Lake Region of China Full text
2020
Yang, Wenliang | Que, Huali | Wang, Shuwei | Zhu, Anning | Zhang, Yujun | He, Ying | Xin, Xiuli | Zhang, Xianfeng | Ding, Shijie
Ammonia emission is one of the dominant pathways of nitrogen fertilizer loss from rice fields in China. It is difficult to measure ammonia emissions by high-frequency sampling with the chamber methods widely used in China, which is of great significance for investigating the environmental effects on the ammonia emissions. The chamber methods also can not accurately determine the ammonia emissions. In this study, the backward Lagrangian stochastic dispersion model, with ammonia concentrations continuously measured by the open-path tunable diode laser absorption spectroscopy technique, was used to determine ammonia emissions from a rice field after fertilizer application at excessive (270 kg N ha⁻¹) and appropriate (210 kg N ha⁻¹) rates in the Taihu Lake Region of China. High temporal resolution measurements of ammonia emissions revealed that high intraday fluctuations of ammonia emissions were significantly affected by the meteorological conditions. Multiple regression analysis showed a dominant solar radiation dependence of intraday ammonia emission cycles, especially during the rice panicle formation stage. The NH₄⁺-N concentrations of the surface water of the rice field were found to be the decisive factor that influenced interday dynamics of ammonia emissions. Accurate quantifications of ammonia emissions indicated that the total ammonia losses under appropriate nitrogen application rate were 27.4 kg N ha⁻¹ during the rice tillering stage and 11.2 kg N ha⁻¹ during the panicle formation stage, which were 29.4% and 17.0% less than those under traditional excessive nitrogen application rate used by the local farmers, respectively. The ammonia loss proportions during the rice panicle formation stage were significantly lower than those of the tillering stage, which might be due to different nitrogen application rates and environmental effects during the two stages. This study indicated that the open-path tunable diode laser absorption spectroscopy technique could facilitate the investigation of high temporal resolution dynamic of ammonia emissions from farmland and the environmental influence on the ammonia emissions.
Show more [+] Less [-]The interference of nonylphenol with bacterial cell-to-cell communication Full text
2020
Jayaprada, Thilini | Hu, Jingming | Zhang, Yunyun | Feng, Huajun | Shen, Dongsheng | Geekiyanage, Sudarshanee | Yao, Yanlai | Wang, Meizhen
The interference of nonylphenol (NP) with humans and animals, especially in hormone systems, has been well-studied. There is rarely any record of its effect on bacteria, which dominate in various environments. In our study, we employed Pseudomonas aeruginosa PAO1 as a model microorganism and took its common lifestyle biofilm, mainly regulated by quorum sensing (QS), as a cut-in point to investigate the effect of NP (1, 5, 10 mg L⁻¹) on bacteria. The results showed that more than 5 mg L⁻¹ of NP did interfere with biofilm formation and affected bacterial QS. In detail, the LasI/R circuit, but not the RhlI/R circuit, was considerably obstructed. The decrease in lasI and lasR expression resulted in a significant reduction in N-3-oxo-dodecanoyl homoserine lactone (3OC₁₂-HSL) signals and the downstream production of elastases. Docking results indicated the binding of NP with LasR protein, simulating the binding of 3OC₁₂-HSL with LasR protein, which explained the obstruction of the LasIR circuit. We concluded that NP competed with 3OC₁₂-HSL and blocked 3OC₁₂-HSL binding with the LasR protein, resulting in a direct interference in bacterial biofilm formation. This is the first report of NP interference with bacterial signaling, which is not only helpful to understand the effect of NP on various ecosystems, but is also beneficial to enrich our knowledge of inter-kingdom communication.
Show more [+] Less [-]Heavy metal accumulation and genotoxic effects in levant vole (Microtus guentheri) collected from contaminated areas due to mining activities Full text
2020
Turna Demir, Fatma | Yavuz, Mustafa
Heavy metal contamination is a serious environmental problem commonly monitored in various organisms. Small wild rodents are ideal biological monitors to show the extent of environmental pollution. The aim of this study was to evaluate the adverse effects of marble and stone quarries on the Levant vole, Microtus guentheri, inhabiting some polluted sites. In this context, Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used to analyze distribution of thirteen heavy metals (Fe, Al, Zn, Cu, Cr, Mn, Ni, B, Pb, As, Co, Cd, and Hg) in the organs (skins, bones, muscles, livers and kidneys) of the biological specimens, and the comet assay revealed DNA damage in blood lymphocytes for the first time. This study was conducted at close to the marble and stone quarries at Korkuteli, Antalya-Turkey during spring, summer, autumn (2017) and winter (2018) seasons. In spring and summer, genetic damage in blood lymphocytes from all polluted sites (sites 1–5) was significantly higher than that of controls, while in autumn it was higher in samples from three sites (sites 3–5). In terms of heavy metal distribution in organs, we found depositions of Fe, Al, Zn, Ni, Mn, Cr, Co, As and Pb primarily in the skin with its derivatives, Cu and Cd deposits in the kidney, Cu, Cd and B deposits in the liver, and As and Pb depositions in the bones. The study shows that certain organs (especially skin with its derivatives) and blood lymphocytes of Levant vole can be used as ideal indicators of heavy metal pollution. Our results suggest that the Korkuteli area could already be under the threat of heavy metal pollution.
Show more [+] Less [-]Health risk assessments based on polycyclic aromatic hydrocarbons in freshwater fish cultured using food waste-based diets Full text
2020
Man, Yu Bon | Mo, Wing Yin | Zhang, Feng | Wong, Ming Hung
Two farmed freshwater fish species Nile tilapia (Oreochromis niloticus) and jade perch (Scortum barcoo) were cultured with food waste-based diets and compared with commercial formulated control diet for a period of six months. Sixteen priority polycyclic aromatic hydrocarbons (PAHs) in the diets and cultured fish meat were tested by gas chromatography–mass spectrometry. No significant differences of ∑PAHs were observed between Nile tilapia and jade perch fed with food waste-based diets and control diet (p > 0.05). However, there were significantly higher concentration of ∑PAHs in market fish compared with the same species of fish fed by food waste-based diets (p < 0.05). Thus, the food waste-based diets have a potential to lower the PAH concentrations in farmed fish when compared with market fish. Based on the PAH concentrations, a human health risk assessment was made. The results indicated there were no non-cancer and very low cancer risks of consuming fish cultured with food waste-based diets at the 95th centile (Nile tilapia: hazard index (HI adult) = 0.343 × 10−3, HI children = 0.614 × 10−3 and cancer risk value = 0.943 × 10−6; jade perch: HI adult = 0.456 × 10−3, HI children = 0.814 × 10−3 and cancer risk value = 0.291 × 10−6). In general, the fish fed with food waste-based diets were unlikely to cause adverse health effects, based on the concentrations of PAHs. There is great potential for using food waste-based diets as an alternative to commercial feeds for cultivating freshwater fish.
Show more [+] Less [-]Association between phthalate exposure and risk of spontaneous pregnancy loss: A systematic review and meta-analysis Full text
2020
Zhang, Hong | Gao, Fumei | Ben, Yujie | Su, Yuping
Numerous studies suggested that phthalates might be associated with increased risk of spontaneous pregnancy loss. However, these results were conflicting and inconclusive. Thus we performed this systematic review and meta-analysis to assess the relationship between phthalate exposure and risk of pregnancy loss. We searched PubMed, EMBASE, Web of Science and major Chinese literature databases for studies investigating phthalates and spontaneous pregnancy loss. Pooled odds ratio (OR) with 95% confident interval (CI) were calculated for risk estimate. A total of 8 studies involving 4713 participants (including 651 cases and 4062 controls) were enrolled in the present meta-analysis. Our pooled results showed that spontaneous pregnancy loss was associated with higher urinary levels of monobutyl phthalate (MBP) (OR: 1.34, 95% CI: 1.04–1.72), mono(2-ethylhexyl) phthalate (MEHP) (OR: 1.57, 95% CI: 1.29–1.90), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) (OR: 1.59, 95% CI: 1.23–2.07) and mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) (OR: 1.47, 95% CI: 1.15–1.89). Indirect estimate of di-2-ethylhexyl phthalate (DEHP) levels, which were pooled from molar sum of urinary DEHP metabolites and hair DEHP, were also correlated with elevated risk of spontaneous pregnancy loss (OR: 1.79, 95% CI: 1.27–2.53). No significant association was found regarding urinary concentrations of monomethyl phthalate (MMP), monoethyl phthalate (MEP), mono-isobutyl phthalate (MiBP), monobenzyl phthalate (MBzP) or mono(2-ethyl-5-carboxypentyl) phthalate (MECPP). Our findings indicate that phthalate exposure might be a risk factor for spontaneous pregnancy loss. Given indirect estimate of phthalate exposure by evaluating its metabolite levels, our results should be interpreted with caution.
Show more [+] Less [-]Focus topics on microplastics in soil: Analytical methods, occurrence, transport, and ecological risks Full text
2020
Li, Jia | Song, Yang | Cai, Yongbing
Microplastics with extremely high abundances are universally detected in marine and terrestrial systems. Microplastic pollution in the aquatic environment, especially in ocean, has become a hot topic and raised global attention. However, microplastics in soils has been largely overlooked. In this paper, the analytical methods, occurrence, transport, and potential ecological risks of microplastics in soil environments have been reviewed. Although several analytical methods have been established, a universal, efficient, faster, and low-cost analytical method is still not available. The absence of a suitable analytical method is one of the biggest obstacles to study microplastics in soils. Current data on abundance and distribution of microplastics in soils are still limited, and results obtained from different studies differ significantly. Once entering into surface soil, microplastics can migrate to deep soil through different processes, e.g. leaching, bioturbation, and farming activities. Presence of microplastics with high abundance in soils can alter fundamental properties of soils. But current conclusions on microplastics on soil organisms are still conflicting. Overall, research on microplastics pollution in soils is still in its infancy and there are gaps in the knowledge of microplastics pollution in soil environments. Many questions such as pollution level, ecological risks, transport behaviors and the control mechanisms are still unclear, which needs further systematical study.
Show more [+] Less [-]Occurrence and sources of PCBs, PCNs, and HCB in the atmosphere at a regional background site in east China: Implications for combustion sources Full text
2020
Mao, Shuduan | Zhang, Gan | Li, Jun | Geng, Xiaofei | Wang, Jiaqi | Zhao, Shizhen | Cheng, Zhineng | Xu, Yue | Li, Qilu | Wang, Yan
Multiple types of persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs), and hexachlorobenzene (HCB), can be unintentionally released from combustion or thermal industrial processes, which are speculated to be the main sources of these contaminants, as they were banned on production and use since several decades ago. In this study, concentrations and sources of 40 PCBs, 39 PCNs, and HCB were analyzed in air samples collected during the period 2012–2015 at a background site in east China. ΣPCBs, ΣPCNs, and HCB were in the range of 9–341 pg/m³, 6–143 pg/m³, and 14–522 pg/m³, respectively. Seasonal characteristics with high levels in winter and low levels in summer were observed for PCNs and HCB. PCBs also exhibited slightly higher levels in winter. Source apportionment was conducted, using polycyclic aromatic hydrocarbons (PAHs) as combustion sources indicator, combined with principal component analysis (PCA) and positive matrix factorization (PMF) model. The results indicated that the legacy of past produced and used commercial PCBs was the dominant contributor (∼56%) to the selected PCBs in the atmosphere in east China. PCNs were mainly emitted from combustion sources (∼64%), whereas HCB almost entirely originated from combustion process (>90%).
Show more [+] Less [-]