Refine search
Results 721-730 of 8,074
Impact of Climatic Changes and Global Warming on Water Availability Full text
2021
Shabbir Hussain | Muhammad Umer Aslam | Mohsin Javed | Manzar Zahra | Haroon Ejaz | Khadeja-al- Kubra | Iqra Mushtaq
Current studies are performed to review the past 20 years literature regarding the impact of global warming and climatic changes on water availability, its quality/quantity/yield and consequent effects on nutrients, freshwater and biota. Water resources are susceptible to changes in climate. The water holding capacity of the atmosphere is increased with the rise of temperature. Global warming will cause increased sea levels due to the spreading of oceans and melting of glaciers. The flow of affected freshwater into the oceans will cause variations in stratification, nutrient availability, salinity, and turbidity, which will affect tourism, agriculture, and industry. The total amount of organic carbon availability varies from winter to warming, and there are also changes in enzymes' activities. There is a vast shift in rainfall due to climate changes. The intense precipitation, runoff, erosion, and transfer of a vast number of pollutants into the groundwater affect drinking water quality. Many organisms such as animals and plants migrate to other regions, so the biological composition of natural ecosystem agriculture is modified. We cannot measure these complicated processes precisely, yet we roughly estimate these processes through the extinction of species and variation in productivity. The temperature has a pronounced effect on the distribution of various species in different geographical regions. Warming shows an impact on interspecific and intraspecific interaction. It also has an impact growth period and yield of crops. The use of future climate models enables us to understand the environmental issues and future climate changes thoroughly.
Show more [+] Less [-]Study of kinetics, and thermodynamics of nikel adsorption from aqueous solutions using modified nano-graphene oxide by melamine Full text
2021
Nazanin Parsa | Hassan Rezaei
one of the most important issues in water resources today is pollution caused by heavy metals. Nickel is a heavy metal that is widely used in various industries. Nickel is one of the most important pollutants in the environment and its removal is very important. There are different methods for separating heavy metals from aqueous media. Among all methods, surface adsorption is a low-cost and simple method and for removing heavy metals in low and medium concentrations. The aim of this study was to investigate the adsorption efficiency of nickel ions from aqueous solutions using melamine modified nano-graphene oxide.The experiments were performed under discontinuous conditions and the five parameters of initial concentration, contact time, temperature, pH and adsorbent dose were optimized. The pseudo-first-order and psedo-second-order kinetic models were investigated. Finally, thermodynamic parameters such as enthalpy and entropy change and Gibbs free energy were calculated.In the kinetic study, by comparing the coefficient of explanation of the pseudo-first-order model (0.3084) and the pseudo -second-order model (0.997), it was found that pseudo -second-order model better shows the adsorption process of nickel by the adsorbent. oxide nanoparticles is spontaneous and the reaction is accompanied by an increase in irregularity and endotherm. The adsorbent surface is multilayered, non-uniform and the adsorbent material on the adsorbent is heterogeneous. Nano graphene oxide modified by melamine has a special surface and high potential and is a suitable adsorbent for removing nickel from aqueous solutions and has a high absorption.
Show more [+] Less [-]Cadmium pollution of soil-rice ecosystems in rice cultivation dominated regions in China: A review Full text
2021
Zou, Mengmeng | Zhou, Shenglu | Su, San | Jia, Zhenyi | Guo, Tianwei | Wang, Junxiao
Cd accumulation in paddy soils and its subsequent transfer to the food chain are widespread environmental issues, which has been extensively investigated in China. However, most studies focused on regional scales and these results may not be applicable to present the Cd contamination status in soil-rice ecosystems at a national scale. Therefore, based on collected data from China’s rice cultivation dominated regions, this study provides the Cd pollution level of paddy soils and rice grains in China. Results indicates that the Yangtze River basin, especially Hunan, required more attention due to the elevated Cd concentrations in soil-rice ecosystems. Moreover, this review summarizes the significant natural and anthropogenic sources, transport and accumulation mechanism as well as the influencing factors of Cd in soil-rice ecosystems. The wide occurrence of Cd contamination in paddy soils derived primarily from mining activities, intensive application of phosphates fertilizers and e-waste. Physicochemical characteristics of soil, soil microorganisms, temperature as well as the physiological features of rice plants all contribute to Cd accumulation in rice grains, which can be controlled to mitigate Cd accumulation in rice grains. This review will provide a scientific reference for Cd pollution control and management with respect to paddy field ecosystems in China and other countries.
Show more [+] Less [-]Toxic effects of NSAIDs in non-target species: A review from the perspective of the aquatic environment Full text
2021
Świacka, Klaudia | Michnowska, Alicja | Maculewicz, Jakub | Caban, Magda | Smolarz, Katarzyna
The presence of pharmaceuticals in the aquatic environment, both in marine and freshwater reservoirs, is a major concern of global environmental protection. Among the drugs that are most commonly used, NSAIDs tend to dominate. Currently, being aware of the problem caused by drug contamination, it is extremely important to evaluate the scale and the full spectrum of its consequences, from short-term to long-term effects. The influence on non-target aquatic animals can take place at many levels, and the effects can be seen both in behaviour and physiology, but also in genetic alterations or reproduction disorders, affecting the development of entire populations. This review summarises all the advances made to estimate the impact of NSAIDs on aquatic animals. Multicellular animals from all trophic levels, inhabiting both inland waters, seas and oceans, have been considered. Particular attention has been paid to chronic studies, conducted at low, environmentally-relevant concentrations, to estimate the real effects of the present pollution. The number of such studies has indeed increased in recent years, allowing for a better insight into the possible consequences of pharmaceutical pollution. It should be stressed, however, that our knowledge is still limited to a few model species, while there are many groups of organisms completely unexplored regarding the effects of drugs. Therefore, the main aim of this paper was to summarise the current state of knowledge on the toxicity of NSAIDs in aquatic animals, also identifying important gaps and major issues requiring further analysis.
Show more [+] Less [-]The abundance and characteristics of microplastics in surface water in the transboundary Ganges River Full text
2021
Napper, Imogen E. | Baroth, Anju | Barrett, Aaron C. | Bhola, Sunanda | Chowdhury, Gawsia W. | Davies, Bede F.R. | Duncan, Emily M. | Sumit Kumar, | Nelms, Sarah E. | Hasan Niloy, Md Nazmul | Nishat, Bushra | Maddalene, Taylor | Thompson, Richard C. | Koldewey, Heather
Microplastics (plastic < 5 mm in size) are now known to contaminate riverine systems but understanding about how their concentrations vary spatially and temporally is limited. This information is critical to help identify key sources and pathways of microplastic and develop management interventions. This study provides the first investigation of microplastic abundance, characteristics and temporal variation along the Ganges river; one of the most important catchments of South Asia. From 10 sites along a 2575 km stretch of the river, 20 water samples (3600 L in total) were filtered (60 samples each from pre- and post-monsoon season). Overall, 140 microplastic particles were identified, with higher concentrations found in the pre-monsoon (71.6%) than in post-monsoon (61.6%) samples. The majority of microplastics were fibres (91%) and the remaining were fragments (9%). We estimate that the Ganges, with the combined flows of the Brahmaputra and Meghna rivers (GBM), could release up to 1–3 billion (10⁹) microplastics into the Bay of Bengal (north-eastern portion of the Indian Ocean) every day. This research provides the first step in understanding microplastic contamination in the Ganges and its contribution to the oceanic microplastic load.
Show more [+] Less [-]Physicochemical properties of aged hydrochar in a rice-wheat rotation system: A 16-month observation Full text
2021
Wang, Bingyu | Fu, Haibin | Han, Lanfang | Xie, Huifang | Xue, Lihong | Feng, Yanfang | Xing, Baoshan
The importance of hydrochar properties for soil application is well known, but the effects of natural aging on hydrochar properties remain ambiguous. The present study aimed to determine the shift patterns in the physicochemical properties of hydrochar through a 16-month soil column aging experiment conducted in a rice-wheat rotation system with hydrochars derived from a wheat straw at 220 °C and 260 °C. Obvious decreasing hydrophilic/polarity indices and increasing porosity, ash content, and stability occurred in aged hyrdrochar, which were due to the dissolved organic matter (DOM) leaching and the interaction with mineral content and fertilizer during the 16-month aging process. Besides, fewer C–OH, slightly more CO, and higher aromaticity (C–C/CC) in aged hydrochar were observed. Meanwhile, the relative abundance of the compounds containing only C, H, and O atoms in water extract of aged hydrochar decreased, while that of the compounds containing C, H, O, and N atoms increased during aging; these findings were attributed to the less labile DOM and microbial degradation and the retention of some plant-derived dissolved organic carbon, respectively. This study provided 16-month aging characterization data regarding alteration in hydrochar physicochemical properties, which was conducive to make a better understanding of the use of hydrochars as sustainable soil amendments from agroecosystems and environmental perspective.
Show more [+] Less [-]Evaluation and variation trends analysis of water quality in response to water regime changes in a typical river-connected lake (Dongting Lake), China Full text
2021
Geng, Mingming | Wang, Kelin | Yang, Nan | Li, Feng | Zou, Yeai | Chen, Xinsheng | Deng, Zhengmiao | Xie, Yonghong
Lake water pollution has caused many serious ecological issues globally. An emerging public concern over water quality deterioration in lakes has heightened the need to evaluate the water quality of lakes at long-term scales, particularly for those with high hydrological alterations. This study combines the Mann–Kendall (M–K) test and self-organising map (SOM) to characterise and evaluate water quality trends in Dongting Lake, China, from 1991 to 2018, before and after the inauguration of the Three Gorges Dam (TGD). Herein, six water quality parameters were selected, namely pH, permanganate index (CODMₙ), ammonia nitrogen (NH₃–N), total nitrogen (TN), total phosphorus (TP), and the five-day biochemical oxygen demand (BOD₅). Our results show that the concentrations of TN and BOD₅ increase significantly throughout the study period (|Z| ≥ 1.96). The number of abrupt change points for the six water quality parameters in the post-TGD period was greater than that in the pre-TGD period, which indicates an increased risk of water deterioration in the post-TGD period. The SOM results show that the pH values ranged from 7.64 to 7.85 among the four clusters; besides, the concentrations of the remaining water quality parameters from 1991 to 1997 and 2000 to 2003 were relatively lower, suggesting that the water quality in the pre-TGD period was better. The classification of TN and TP ranged from Level Ⅳ–Ⅴ among the clusters, which did not satisfy the level Ⅲ standard for potable water, thereby posing a higher ecological risk to the Dongting Lake. These results indicate the deterioration of the water quality in Dongting Lake during the post-TGD period under the influences of pollution load and hydrological regulation. Therefore, strict controls on the external nutrient loading and hydrological regulations should be considered for water quality management.
Show more [+] Less [-]Association of exposure to ambient air pollution with ovarian reserve among women in Shanxi province of north China Full text
2021
Feng, Xiaoqin | Luo, Jinhong | Wang, Xiaocheng | Xie, Wolong | Jiao, Jiao | Wu, Xiaohui | Fan, Lingling | Qin, Guohua
Air pollution has been an important risk factor for female reproductive health. However, epidemiological evidence of ambient air pollution on the predictor for ovarian reserve (antral follicle count, AFC) is deficient. We aim to comprehensively evaluate the association of long-term exposure to ambient air pollution with AFC among women of reproductive age in Shanxi of north China. 600 women with spontaneous menstrual cycle, not using controlled ovarian stimulation, were enrolled in the retrospective study. Two distinct periods of antral follicle development were designed as exposure windows. Generalized linear model was employed to estimate the change of AFC associated with exposure of atmospheric pollutants (SO₂, NO₂, PM₁₀, PM₂.₅, CO and O₃). Stratification analysis based on age (<30, ≥30 years), university degree (yes, no), years of exposure (2013–2016, 2017–2019) and duration of infertility (<2, 2–5, >5 years) along with two pollutants model were employed to further illustrate the association. We found every 10 μg/m³ increase in SO₂ concentration level during the entire development stage of antral follicle was associated with a −0.01 change in AFC (95% confidence interval: −0.016, −0.002) adjusting for the confounders including age, BMI, parity and infertility diagnosis factors. The significant association of increased SO₂ level with decreased AFC was particularly observed during the early transition from primary follicle to preantral follicle stage by 10 μg/m³ increase in SO₂ exposure level with a −0.01 change (95% CI: -0.015, −0.002) in AFC. The negative association was pronounced among women aged ≥30 years old, and also significant in two pollutants model after adjusting the confounders. No significant associations between other air pollutants and AFC were observed. Our finding suggests that long-term exposure to air pollutant SO₂ is associated with lower AFC, raising our concern that atmospheric SO₂ exposure may have potential adverse impact on women ovarian reserve.
Show more [+] Less [-]Molecular characterization and spatial distribution of dicarboxylic acids and related compounds in fresh snow in China Full text
2021
Zhang, Zhimin | Zhao, Wanyu | Hu, Wei | Deng, Junjun | Ren, Lujie | Wu, Libin | Chen, Shuang | Meng, Jingjing | Pavuluri, Chandra Mouli | Sun, Yele | Wang, Zifa | Kawamura, Kimitaka | Fu, Pingqing
Low molecular weight organic compounds are ubiquitous in the atmosphere. However, knowledge on their concentrations and molecular distribution in fresh snow remains limited. Here, twelve fresh snow samples collected at eight sites in China were investigated for dicarboxylic acids and related compounds (DCRCs) including oxocarboxylic acids and α-dicarbonyls. Dissolved organic carbon (DOC) concentrations in the snow samples ranged from 0.99 to 14.6 mg C L⁻¹. Concentrations of total dicarboxylic acids were from 225 to 1970 μg L⁻¹ (av. 650 μg L⁻¹), while oxoacids (28.3–173, av. 68.1 μg L⁻¹) and dicarbonyls (12.6–69.2, av. 31.3 μg L⁻¹) were less abundant, accounting for 4.6–8.5% (6.2%), 0.45–1.4% (0.73%), and 0.12–0.88% (0.46%) of DOC, respectively. Molecular patterns of dicarboxylic acids are characterized by a predominance of oxalic acid (C₂) (95.0–1030, av. 310 μg L⁻¹), followed by phthalic (Ph) (9.69–244, av. 69.9 μg L⁻¹) or succinic (C₄) (23.8–163, av. 63.7 μg L⁻¹) acid. Higher concentrations of Ph in snow from Beijing and Tianjin than other urban and rural regions suggest significant emissions from vehicular exhausts and other fossil fuel combustion sources in megacities. C₂ constituted 40–54% of total diacids, corresponding to 1.5–2.6% of snow DOC. The total measured DCRCs represent 5.5–10% of snow DOC, which suggests that there are large amounts of unknown organics requiring further investigations. The spatial distributions of diacids exhibited higher loadings in megacities than rural and island sites. Molecular distributions of diacids indicated that the photochemical modification was restrained under the weak solar radiation during the snow events, while anthropogenic primary sources had a more significant influence in megacities than rural areas and islands.
Show more [+] Less [-]Long-term health impact of PM2.5 under whole-year COVID-19 lockdown in China Full text
2021
Hao, Xin | Li, Jiandong | Wang, Huijun | Liao, Hong | Yin, Zhicong | Hu, Jianlin | Wei, Ying | Dang, Ruijun
The health impact of changes in particulate matter with an aerodynamic diameter <2.5 μm (PM₂.₅) pollution associated with the COVID-19 lockdown has aroused great interest, but the estimation of the long-term health effects is difficult because of the lack of an annual mean air pollutant concentration under a whole-year lockdown scenario. We employed a time series decomposition method to predict the monthly PM₂.₅ concentrations in urban cities under permanent lockdown in 2020. The premature mortality attributable to long-term exposure to ambient PM₂.₅ was quantified by the risk factor model from the latest epidemiological studies. Under a whole-year lockdown scenario, annual mean PM₂.₅ concentrations in cites ranged from 5.4 to 68.0 μg m⁻³, and the national mean concentration was reduced by 32.2% compared to the 2015–2019 mean. The Global Exposure Mortality Model estimated that 837.3 (95% CI: 699.8–968.4) thousand people in Chinese cities would die prematurely from illnesses attributable to long-term exposure to ambient PM₂.₅. Compared to 2015–2019 mean levels, 140.2 (95% CI: 122.2–156.0) thousand premature deaths (14.4% of the annual mean deaths from 2015 to 2019) attributable to long-term exposure to PM₂.₅ were avoided. Because PM₂.₅ concentrations were still high under the whole-year lockdown scenario, the health benefit is limited, indicating that continuous emission-cutting efforts are required to reduce the health risks of air pollution. Since a similar scenario may be achieved through promotion of electric vehicles and the innovation of industrial technology in the future, the estimated long-term health impact under the whole year lockdown scenario can establish an emission–air quality–health impact linkage and provide guidance for future emission control strategies from a health protection perspective.
Show more [+] Less [-]