Refine search
Results 731-740 of 7,989
Highly effective remediation of high-arsenic wastewater using red mud through formation of AlAsO4@silicate precipitate
2021
Lu, Zhixu | Qi, Xianjin | Zhu, Xing | Li, Xuezhu | Li, Kongzhai | Wang, Hua
High-arsenic wastewater derived from the metallurgical industry of nonferrous minerals is one of the most dangerous arsenic (As) sources that usually follow the emission of massive hazardous arsenic-bearing wastes. Considering the properties of red mud (RM), we propose an alternative and environmentally friendly method for the efficient remediation of high-arsenic wastewater using RM through formation of AlAsO₄@silicate precipitate, aiming at ''zero-emission of hazardous solid waste''. The results show nearly 100% of arsenic could be stepwisely removed from high-arsenic wastewater and reduce the arsenic concentration from 6100 mg/L to 40 μg/L using RM at room temperature. The highest arsenic removal capacity of RM reaches 101.5 mg/g at a RM-to-wastewater ratio of 40 g/L due to the superior arsenic adsorption and the co-precipitation of arsenate and Al³⁺ to form insoluble aluminum arsenate. The silicate shell of arsenic-loaded RM created at an alkaline condition acts as an arsenic stabilizer, resulting in a leached arsenic concentration of 1.2 mg/L in TCLP tests. RM acts as a highly effective arsenic remover and stabilizer for the disposal of high-arsenic wastewater. It shows great potential for the remediation of wastewater containing heavy metals with varying concentrations to produce clean water available for industrial purpose.
Show more [+] Less [-]The role of NLRP3 in lead-induced neuroinflammation and possible underlying mechanism
2021
Su, Peng | Wang, Diya | Cao, Zipeng | Chen, Jingyuan | Zhang, Jianbin
Neuroinflammation induced by lead exposure (Pb) is a major cause of neurotoxicity of Pb in the central nervous system (CNS). The NLR family, domain of pyrin containing 3 (NLRP3) involves in various neurological diseases, while the question of whether NLRP3 plays a role in lead-induced neuroinflammation has not yet been reported.Developmental and knockout (KO) NLRP3 mice were used to establish two in vivo models, and BV2 cells were used to establish an in vitro model. Behavioral and electrophysiologic tests were used to assess the neurotoxicity of Pb, and immunofluorescence staining was used to assess neuroinflammation. Real-time PCR and western blot were performed to examine the mRNA and protein levels of inflammatory cytokines and NLRP3 inflammasomes. siRNA technology was used to block NLRP3 expression.Pb exposure led to neural injure and microglial activation in the hippocampus region, while minocycline intervention attenuated Pb-induced neurotoxicity by inhibiting neuroinflammation. Pb increased the expression of NLRP3 and promoted cleavage of caspase-1 in mRNA and protein levels, and minocycline partially reversed the effects of Pb on NLRP3 inflammasomes. Blocking of NLRP3 by KO mice or siRNA attenuated neural alterations induced by Pb, weakened microglial activation in vivo and in vitro as well, without affecting the accumulation of Pb. Pb increased autophagic protein levels and phosphorylation of NF-κB, while suppressing autophagy or NF-κB inhibited Pb's effects on NLRP3.NLRP3 is involved in the regulation of Pb-induced neurotoxicity. These findings expand mechanism research of Pb neurotoxicity and may help establish new prevention strategies for Pb neurotoxicity.
Show more [+] Less [-]Effects of simazine and food deprivation chronic stress on energy allocation among the costly physiological processes of male lizards (Eremias argus)
2021
Wang, Zikang | Zhu, Wenning | Xu, Yuanyuan | Yu, Simin | Zhang, Luyao | Zhou, Zhiqiang | Diao, Jinling
The residue of simazine herbicide in the environment is known as one of pollutant stress for lizards by crippling its fitness on direct toxic effects and indirect food shortage via the food chain effects. Both stressors were considered in our experiment in the simazine exposure and food availability to lizards (Eremias argus). The results revealed that starvation significantly reduced the lizard’s energy reserve and native immune function, while the accumulation of simazine in the liver was significantly increased. Simazine caused oxidative stress in the liver of lizards, but oxidative damage only occurred in the starved lizards. Simazine also changed the energy reserves, native immune function and detoxification of well-fed lizards, while the starved lizards showed different sensitivity to simazine. Simazine or starvation treatment independently activated the lizard HPA axis, but co-treatment caused the HPA axis inhibition. Besides, according to the variations on amino acid neurotransmitters, corticosterone hormone and thermoregulatory behavior, we inferred that lizards in threatens take the appropriate strategy on energy investment and allocation through neural, endocrine and behavioral pathways to maximize benefits in dilemma. Energy allocation was necessary, while suppression on any physiological process comes at a cost that is detrimental to long-term individual fitness.
Show more [+] Less [-]Effect of salinity and algae biomass on mercury cycling genes and bacterial communities in sediments under mercury contamination: Implications of the mercury cycle in arid regions
2021
Song, Wenjuan | Xiong, Heigang | Qi, Ran | Wang, Shuzhi | Yang, Yuyi
Lakes in arid regions are experiencing mercury pollution via air deposition and surface runoff, posing a threat to ecosystem safety and human health. Furthermore, salinity and organic matter input could influence the mercury cycle and composition of bacterial communities in the sediment. In this study, the effects of salinity and algae biomass as an important organic matter on the genes (merA and hgcA) involved in the mercury cycle under mercury contamination were investigated. Archaeal merA and hgcA were not detected in sediments of lake microcosms, indicating that bacteria rather than archaea played a crucial role in mercury reduction and methylation. The high content of mercury (300 ng g⁻¹) could reduce the abundance of both merA and hgcA. The effects of salinity and algae biomass on mercury cycling genes depended on the gene type and dose. A higher input of algae biomass (250 mg L⁻¹) led to an increase of merA abundance, but a decrease of hgcA abundance. All high inputs of mercury, salinity, and algae biomass decreased the richness and diversity of bacterial communities in sediment. Further analysis indicated that higher mercury (300 ng g⁻¹) led to an increased relative abundance of mercury methylators, such as Ruminococcaceae, Bacteroidaceae, and Veillonellaceae. Under saline conditions (10 and 30 g L⁻¹), the richness of specific bacteria associated with mercury reduction (Halomonadaceae) and methylation (Syntrophomonadaceae) increased compared to the control. The input of algae biomass led to an increase in the specific bacterial communities associated with the mercury cycle and the richness of bacteria involved in the decomposition of organic matter. These results provide insight into mercury cycle-related genes and bacterial communities in the sediments of lakes in arid regions.
Show more [+] Less [-]A novel algorithm to determine the scattering coefficient of ambient organic aerosols
2021
Zhu, Wenfei | Guo, Song | Lou, Shengrong | Wang, Hui | Yu, Ying | Xu, Weizhao | Liu, Yucun | Cheng, Zhen | Huang, Xiaofeng | He, Lingyan | Zeng, Limin | Chen, Shiyi | Hu, Min
In the present work, we propose a novel algorithm to determine the scattering coefficient of OA by evaluating the relationships of the MSEs for primary organic aerosol (POA) and secondary organic aerosol (SOA) with their mass concentrations at three distinct sites, i.e. an urban site, a rural site, and a background site in China. Our results showed that the MSEs for POA and SOA increased rapidly as a function of mass concentration in low mass loading. While the increasing rate declined after a threshold of mass loading of 50 μg/m³ for POA, and 15 μg/m³ for SOA, respectively. The dry scattering coefficients of submicron particles (PM₁) were reconstructed based on the algorithm for POA and SOA scattering coefficient and further verified by using multi-site data. The calculated dry scattering coefficients using our reconstructing algorithm have good consistency with the measured ones, with the high correlation and small deviation in Shanghai (R² = 0.98; deviations: 2.9%) and Dezhou (R² = 0.90; deviations: 4.7%), indicating that our algorithms for OA and PM₁ are applicable to predict the scattering coefficient of OA and Submicron particle (PM₁) in China.
Show more [+] Less [-]Air quality and health impact of 2019–20 Black Summer megafires and COVID-19 lockdown in Melbourne and Sydney, Australia
2021
Ryan, Robert G. | Silver, Jeremy D. | Schofield, Robyn
Poor air quality is an emerging problem in Australia primarily due to ozone pollution events and lengthening and more severe wildfire seasons. A significant deterioration in air quality was experienced in Australia’s most populous cities, Melbourne and Sydney, as a result of fires during the so-called Black Summer which ran from November 2019 through to February 2020. Following this period, social, mobility and economic restrictions to curb the spread of the COVID-19 pandemic were implemented in Australia. We quantify the air quality impact of these contrasting periods in the south-eastern states of Victoria and New South Wales (NSW) using a meteorological normalisation approach. A Random Forest (RF) machine learning algorithm was used to compute baseline time series’ of nitrogen dioxide (NO₂), ozone (O₃), carbon monoxide CO and particulate matter with diameter < 2.5 μm (PM₂.₅), based on a 19 year, detrended training dataset. Across Victorian sites, large increases in CO (188%), PM₂.₅ (322%) and ozone (22%) were observed over the RF prediction in January 2020. In NSW, smaller pollutant increases above the RF prediction were seen (CO 58%, PM₂.₅ 80%, ozone 19%). This can be partly explained by the RF predictions being high compared to the mean of previous months, due to high temperatures and strong wind speeds, highlighting the importance of meteorological normalisation in attributing pollution changes to specific events. From the daily observation-RF prediction differences we estimated 249.8 (95% CI: 156.6–343.) excess deaths and 3490.0 (95% CI 1325.9–5653.5) additional hospitalisations were likely as a result of PM₂.₅ and O₃ exposure in Victoria and NSW. During April 2019, when COVID-19 restrictions were in place, on average NO₂ decreased by 21.5 and 8% in Victoria and NSW respectively. O₃ and PM₂.₅ remained effectively unchanged in Victoria on average but increased by 20 and 24% in NSW respectively, supporting the suggestion that community mobility reduced more in Victoria than NSW. Overall the air quality change during the COVID-19 lockdown had a negligible impact on the calculated health outcomes.
Show more [+] Less [-]Unique biocenosis as a foundation to develop a phytobial consortium for effective bioremediation of Cr(VI)-polluted waters and sediments
2021
Augustynowicz, Joanna | Sitek, Ewa | Latowski, Dariusz | Wołowski, Konrad | Kowalczyk, Anna | Przejczowski, Rafał
This paper analyzes a unique, aquatic phytobial biocenosis that has been forming naturally for over 20 years and operating as a filter for Cr(VI)-polluted groundwater. Our study presents a thorough taxonomic analysis of the biocenosis, including filamentous algae, vascular plants, and microbiome, together with the analysis of Cr accumulation levels, bioconcentration factors and other environmentally-significant parameters: siderophore production by bacteria, biomass growth of the plants or winter hardiness. Among 67 species identified in the investigated reservoir, 13 species were indicated as particularly useful in the bioremediation of Cr(VI)-polluted water and sediment. Moreover, three species of filamentous algae, Tribonema sp., and three easily culturable bacterial species were for the first time shown as resistant to Cr concentration up to 123 mg/dm³, i.e. 6150 times over the permissible level. The work presents a modern holistic phytobial consortium indispensable for the remediation of Cr(VI)-contaminated aquatic environment in temperate zones worldwide.
Show more [+] Less [-]Reduction of nitrate using biochar synthesized by Co-Pyrolyzing sawdust and iron oxide
2021
Han, Eun-Yeong | Kim, Bo-Kyong | Kim, Hye-Bin | Kim, Jong-Gook | Lee, Jae-Young | Baek, Kitae
Nitrate is the most common contaminant in groundwater in Korea, as well as across the world. Reduction of nitrate to ammonia is one of the options available to remediate groundwater. In this study, nitrate in groundwater was removed using a zero-valent iron (ZVI) containing biochar synthesized by co-pyrolyzing iron oxide and sawdust biomass. Among the various biogases generated during the pyrolysis of biomass, CO and H₂ act as reducing agents to transform iron oxides to ZVI. Approximately 71% of nitrate was reduced to ammonium by ZVI-biochar at initial pH 2.0, and the reduction decreased sharply by the increase in pH. The mass of nitrate-N decreased is exactly same with the mass of ammonia-N formed. However, ammonium remained in the aqueous phase after reduction by ZVI-biochar, and the total nitrogen was not lowered. Acid-washed zeolite adsorbed most ammonium reduced by the ZVI-biochar and maintained the pH to acidic condition to facilitate the reduction of nitrate. The results of this study imply that nitrate-contaminated groundwater can be properly treated within the guidelines of water quality by synthesized ZVI-containing biochar.
Show more [+] Less [-]Geochemical fractionation, bioavailability, and potential risk of heavy metals in sediments of the largest influent river into Chaohu Lake, China
2021
Liu, Bingxiang | Luo, Jun | Jiang, Shuo | Wang, Yan | Li, Yucheng | Zhang, Xuesheng | Zhou, Shaoqi
As the largest tributary flowing into Chaohu Lake, China, the Hangbu–Fengle River (HFR) has an important impact on the aquatic environment security of the lake. However, existing information on the potential risks of heavy metals (HMs) in HFR sediments was insufficient due to the lack of bioavailability data on HMs. Hence, geochemical fractionation, bioavailability, and potential risk of five HMs (Cr, Cu, Zn, Cd, and Pb) in HFR sediments were investigated by the combined use of the diffusive gradient in thin-films (DGT), sequential extraction (BCR), as well as the physiologically based extraction test (PBET). The average contents of Cd and Zn in the HFR Basin were more than the background values in the sediments of Chaohu Lake. A large percentage of BCR-extracted exchangeable fraction was found in Cd (8.69%), Zn (8.12%), and Cu (8.05%), suggesting higher bioavailability. The PBET-extracted fractions of five HMs were all almost closely positively correlated with their BCR-extracted forms. The pH was an important factor affecting the bioavailability of HMs. The average DGT-measured contents of Zn, Cd, Cr, Cu, and Pb were 28.07, 7.7, 3.69, 2.26, 0.5 μg/L, respectively. Only DGT-measured Cd significantly negatively correlated with Eh, indicating that Cd also had a high release risk under reducing conditions, similar to the risk assessment results. Our results could provide a reference for evaluating the potential bioavailabilities and ecological hazards of HMs in similar study areas.
Show more [+] Less [-]A critical review on human internal exposure of phthalate metabolites and the associated health risks
2021
Huang, Senyuan | Qi, Zenghua | Ma, Shengtao | Li, Guiying | Long, Chaoyang | Yu, Yingxin
Phthalates (PAEs) are popular synthetic chemicals used as plasticizers and solvents for various products, such as polyvinyl chloride or personal care products. Human exposure to PAEs is associated with various diseases, resulting in PAE biomonitoring in humans. Inhalation, dietary ingestion, and dermal absorption are the major human exposure routes. However, estimating the actual exposure dose of PAEs via an external route is difficult. As a result, estimation by internal exposure has become the popular analytical methods to determine the concentrations of phthalate metabolites (mPAEs) in human matrices (such as urine, serum, breast milk, hair, and nails). The various exposure sources and patterns result in different composition profiles of PAEs in biomatrices, which vary from country to country. Nevertheless, the mPAEs of diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), di-iso-butyl phthalate (DiBP), and di-(2-ethylhexyl) phthalate (DEHP) are predominant in the urine. These mPAEs have greater potential health risks for humans. Children have been observed to exhibit higher exposure risks to several mPAEs than adults. Besides age, other influencing factors for phthalate exposure are gender, jobs, and residential areas. Although many studies have reported biological monitoring of PAEs, only a few reviews that adequately summarized the reports are available. The current review appraised available studies on mPAE quantitation in human biomatrices and estimated the dose and health risks of phthalate exposure. While some countries lack biomonitoring data, some countries’ data do not reflect the current PAE exposure. Thence, future studies should involve frequent PAE biomonitoring to accurately estimate human exposure to PAEs, which will contribute to health risk assessments of human exposure to PAEs. Such would aid the formulation of corresponding regulations and restrictions by the government.
Show more [+] Less [-]