Refine search
Results 751-760 of 5,014
The effect of hydrodynamic forces of drying/wetting cycles on the release of soluble reactive phosphorus from sediment Full text
2019
Ding, Jue | Hua, Zulin | Chu, Kejian
Soluble reactive phosphorus (SRP) that is released from sediment plays an important role in contributing to a lake's eutrophication. Much of the work that has studied sediment release has been conducted in the submerged bottom sediment of lakes. Less attention has paid to the littoral zones near land boundaries where the hydrodynamic disturbance of drying/wetting cycles dominates. To date, the release mechanism under drying/wetting cycles has not been revealed quantitatively. In this study, we conducted a series of laboratory experiments to evaluate the effect of varied frequencies of drying/wetting cycles to the efflux of SRP from sediment. We tested SRP, Fe2+, pH, and redox condition (pE) in overlying water under three frequencies of 24, 9, and 2.77 day−1 (F1, F2, and F3, respectively). SRP concentrations of F1, F2, and F3 experimental conditions were 3.46, 1.73, and 1.38 times that of a static experimental condition, respectively, showing a significant difference (p < 0.05) among the conditions. The overlying water under drying/wetting cycles varied in weak-base and low-redox status, which facilitated ion release. The SRP concentration of the porewater varied with the different frequencies of drying/wetting cycles. These results suggested that the variation of SRP in the porewater was strongly correlated with SRP release (R2 = 0.809). Drying/wetting cycles enhanced the mobilization and release of SRP from the sediment to the overlying water through porewater exchange. The evaluation model emphasized that porewater exchange made the greatest contribution to SRP release and a higher frequency of drying/wetting cycles may have promoted this exchange of porewater between the sediment and overlying water, thus facilitating the release of SRP.
Show more [+] Less [-]Underwater noise level predictions of ammunition explosions in the shallow area of Lithuanian Baltic Sea Full text
2019
Bagočius, Donatas | Narščius, Aleksas
Among the noisiest man-made activities in the seas, emitting very high acoustic energy are the underwater explosions of various objects and ship shock trials. Sound energy emitted by high explosives can be predicted or measured at sea. Sometimes, it can be convenient to apply empirical formulas and scaling laws to approximate the energy of underwater explosions. In addition, at some instances the determination of the spectral properties of the explosions is useful, i.e. when possible animal exposure to impulsive noise has to be evaluated. This paper presents an example of an application of freely available scaling laws and equations for prediction of noise levels of underwater explosions of historical ordnance in the shallow sea environments.Main findings of the study: An available scaling laws applied to model underwater explosion properties; spatial extent of explosion mapped; arising issues of modelling of underwater explosions in the shallow marine areas discussed.
Show more [+] Less [-]Chemical characterization and source apportionment of PM2.5 personal exposure of two cohorts living in urban and suburban Beijing Full text
2019
Shang, Jing | Khuzestani, Reza Bashiri | Tian, Jingyu | Schauer, James J. | Hua, Jinxi | Zhang, Yang | Cai, Tianqi | Fang, Dongqing | An, Jianxiong | Zhang, Yuanxun
In the study, personal PM₂.₅ exposures and their source contributions were characterized for 159 subjects living in the Beijing Metropolitan area. The exposures and sources were examined as functions of residential location, season, vocation, cigarette smoking, and time spent outdoors. Sampling was performed for two categories of volunteers, guards and students, that lived in urban and suburban areas of Beijing. Samples were collected using portable PM₂.₅ monitors during summer and winter. Exposure measurements were supplemented with a questionnaire that tracked personal activity and time spent in microenvironments that may have impacted exposures. Simultaneously, ambient PM₂.₅ data were obtained from national network stations located at the Gucheng and Huairouzhen sites. These data were used as a comparison against the personal PM₂.₅ exposures and produced poor correlations between personal and ambient PM₂.₅. These results demonstrate that individual behavior strongly affects personal PM₂.₅ exposure. Six primary sources of personal PM₂.₅ exposure were determined using a positive matrix factorization (PMF) source apportionment model. These sources included Roadway Transport Source, Soil/Dust Source, Industrial/Combustion Source, Secondary Inorganic Source, Cd Source, and Household Heating Source. Averaged across all subjects and seasons, the highest source contribution was Secondary Inorganic Source (24.8% ± 32.6%, AVG ± STD), whereas the largest primary ambient source was determined to be Roadway Transport (20.9% ± 13.6%). Subjects were classified according to the questionnaire and were used to help understand the relationship between personal activity and source contribution to PM₂.₅ exposure. In general, primary ambient sources showed only significant spatial and seasonal differences, while secondary sources differed significantly between populations with different personal behavior. In particular, Cd source was found to be related to smoking exposure and was the most unpredictable source, with significant differences between populations of different sites, vocations, smoking exposures, and outdoor time.
Show more [+] Less [-]Dissolved organic phosphorus enhances arsenate bioaccumulation and biotransformation in Microcystis aeruginosa Full text
2019
Wang, Zhenhong | Gui, Herong | Luo, Zhuanxi | Zhen, Zhuo | Yan, Changzhou | Xing, Baoshan
Only limited information is available on the effects of dissolved organic phosphorus (DOP) on arsenate (As(V)) bioaccumulation and biotransformation in organisms. In this study, we examined the influence of three different DOP forms (β-sodium glycerophosphate (βP), adenosine 5′-triphosphate (ATP), and D-Glucose-6-phosphate disodium (GP) salts) and inorganic phosphate (IP) on As(V) toxicity, accumulation, and biotransformation in Microcystis aeruginosa. Results showed that M. aeruginosa utilized the three DOP forms to sustain its growth. At a subcellular level, the higher phosphorus (P) distribution in metal-sensitive fractions (MSF) observed in the IP treatments could explain the comparatively lower toxic stress of algae compared to the DOP treatments. Meanwhile, the higher MSF distribution of arsenic (As) in M. aeruginosa in the presence of DOP could explain the higher toxicity with lower 96-h half maximal effective concentration (EC50) values. Although we observed As(V) and P discrimination in M. aeruginosa under IP treatments with high intracellular P/As, we did not find this discrimination under the DOP treatments. As accumulation in algal cells was therefore greatly enhanced by DOP, especially βP, given its lower transformation rate to phosphate compared to ATP and GP in media. Additionally, As(V) reduction and, subsequently, As(III) methylation were greatly facilitated in M. aeruginosa by the presence of DOP, particularly GP, which was confirmed by the higher relative expression of its two functional genes (arsC and arsM). Our findings indicate that As(V) accumulation and its subsequent biotransformation were enhanced by organic P forms, which provides new insight into how DOP modulates As metabolism in algae.
Show more [+] Less [-]1,4-Dioxane cosolvency impacts on trichloroethene dissolution and sorption Full text
2019
Milavec, Justin | Tick, Geoffrey R. | Brusseau, Mark L. | Carroll, Kenneth C.
Solvent stabilizer 1,4-dioxane, an emerging recalcitrant groundwater contaminant, was commonly added to chlorinated solvents such as trichloroethene (TCE), and the impact of co-disposal on contaminant transport processes remains uncertain. A series of batch equilibrium experiments was conducted with variations of 1,4-dioxane and TCE composition to evaluate aqueous dissolution of the two components and their sorption to aquifer sediments. The solubility of TCE increased with increasing amounts of 1,4-dioxane, indicating that 1,4-dioxane acts as a cosolvent causing solubility enhancement of co-contaminants. The solubilization results compared favorably with predictions using the log-linear cosolvency model. Equilibrium sorption coefficients (Kd and Kf) were also measured for different 1,4-dioxane and TCE compositions, and the findings indicate that both contaminants adsorb to aquifer sediments and TCE Kd values increased with increasing organic matter content. However, the Kd for TCE decreased with increases in 1,4-dioxane concentration, which was attributed to cosolvency impacts on TCE solubility. These findings further advance our understanding of the mass-transfer processes controlling groundwater plumes containing 1,4-dioxane, and also have implications for the remediation of 1,4-dioxane contamination.
Show more [+] Less [-]Distribution and physicochemical properties of particulate matter in swine confinement barns Full text
2019
Shen, Dan | Wu, Sheng | Li, Zhaojian | Tang, Qian | Dai, Pengyuan | Li, Yansen | Li, Chunmei
Air pollutants accumulated in confined livestock barns could impact the health of animals and staff. Particulate matter (PM) and ammonia (NH3) concentrations are typically high in enclosed livestock houses with weak ventilation. The objective of this study was to investigate the distribution of PM in different size fractions and the levels of NH3 in a high-rise nursery (HN) barn and a high-rise fattening (HF) barn on a swine farm and to analyse the physicochemical properties of fine PM (PM2.5, PM with aerodynamic diameter ≤ 2.5 μm). The concentrations of total suspended particles (TSP, PM with aerodynamic diameter ≤ 100 μm), inhalable PM (PM10, PM with aerodynamic diameter ≤ 10 μm), PM2.5 and NH3 were monitored continuously for 6 d in each barn. The results showed that the concentrations of PM and NH3 varied with position, they were significantly higher inside the barns than outside (P < 0.01) and significantly higher in the forepart than at the rear of the two barns (P < 0.05). In the HF barn, the values of the two parameters were 0.777 ± 0.2 mg m−3 and 26.7 ± 7 mg m−3, respectively, significantly higher than the values observed in the HN barn at all monitored sites (P < 0.05). The PM concentrations increased markedly during feeding time in the two barns. Chemical characteristics analysis revealed that the main sources of PM2.5 in the two barns may have consisted of blowing dust, feed, mineral particles and smoke. In conclusion, the air quality at the forepart was worse than that at the rear of the barns. Activities such as feeding could increase the PM concentrations. The components of PM2.5 in the two barns were probably blowing dust, feed, mineral particles and smoke from outside.
Show more [+] Less [-]Photoelectrocatalytic degradation of vesicant agent using Eu/ZnO/pPy nanocomposite Full text
2019
Sharma, Pushpendra K. | Singh, Virendra V. | Pandey, Lokesh K. | Sikarwar, Bhavna | Boopathi, Mannan | Ganesan, Kumaran
Herein, we demonstrate a nanocomposite material Eu/ZnO/pPy for enhanced performance in photoelectrocatalytic degradation of chemical warfare agent sulphur mustard (SM) at ambient conditions which is growing concern of the Scientific Community amidst the current climate of terrorism. Eu/ZnO/pPy was electrochemically prepared on Au electrode at ambient conditions and was used for electrocatalytic reductive elimination of chloride from SM and results indicated one electron involvement process for the cleavage of the carbon-chloride bond. Surface morphology of Eu/pPy, ZnO/pPy and Eu/ZnO/pPy composites were characterized by SEM and confirmed the formation of the nanoparticles and nanorods on the modified electrode which leads to provide more surface area for the reductive elimination reaction. The elemental composition, functional groups and phase of materials on the modified electrode were deduced using EDX, Raman spectroscopy and XRD, respectively. Eu/ZnO/pPy/Au electrode was utilized for the photoelectrocatalytic degradation of SM as it exhibit excellent electrocatalytic activity and degradation products were analyzed by GC-MS. In the reductive elimination of SM, the following parameters were deduced (i) heterogeneous rate constant (0.127 s⁻¹), (ii) transfer coefficient (0.32) and (iii) number of electron involved (1.0). The enhanced photoelectrocatalytic capability of this nanocomposite could serve as a novel and promising catalyst in defence and environmental applications.
Show more [+] Less [-]A comprehensive risk assessment of metals in riverine surface sediments across the rural-urban interface of a rapidly developing watershed Full text
2019
Wang, Zhenfeng | Zhou, Jiayu | Zhang, Chi | Qu, Liyin | Mei, Kun | Dahlgren, Randy A. | Zhang, Minghua | Xia, Fang
Metal contamination in aquatic environments is a severe global concern to human health and aquatic ecosystems. This study used several risk assessment indices, to evaluate metal (Cu, Zn, Pb, Cd and Cr) environmental risk of riverine surface sediments across the rural-urban interface of the rapidly developing Wen-Rui Tang River watershed in eastern China. Risk assessments were determined for 38 sites based on the potential ecological risk index (RI), consensus-based sediment quality guidelines (SQGs) and risk assessment code (RAC). Land-use cluster analysis showed that sediments were severely contaminated, especially for Cd, whose concentrations were ∼100 times higher than background levels and had a high proportion in the bioaccessible fraction. According to RI, ErCd was identified with extremely high risk potential, resulting in the highest ecological risk of Cluster 4 (industrial). Similarly, risk within Cluster 4 (industrial) was also ranked highest by SQGs assessment due to the high proportion of industrial land use. Zinc was determined with high risk due to its high concentration compared to its effect range medium (ERM) value. Discrepancies in predicting environmental risks from metals among the three indices were mainly attributed to the contrasting definitions of these metrics. Environmental risk uncertainty derived from spatial variation was further estimated by Monte Carlo simulation and ranked as: Zn > Cd > Cr > Pb > Cu. This comprehensive environmental risk assessment provides important information to guide remediation strategies for management of metal contamination at the watershed scale.
Show more [+] Less [-]Temporal variation in zooplankton and phytoplankton community species composition and the affecting factors in Lake Taihu—a large freshwater lake in China Full text
2019
Li, Cuicui | Feng, Weiying | Chen, Haiyan | Li, Xiaofeng | Song, Fanhao | Guo, Wenjing | Giesy, John P. | Sun, Fuhong
Monitoring diverse components of aquatic ecosystems is vital for elucidation of diversity dynamics and processes, which alter freshwater ecosystems, but such studies are seldom conducted. Phytoplankton and zooplankton are integral components which play indispensable parts in the structure and ecological service function of water bodies. However, few studies were made on how zooplankton and phytoplankton community may respond simultaneously to change of circumstance and their mutual relationship. Therefore, we researched synchronously the phytoplankton communities as well as zooplankton communities based on monthly monitoring data from September 2011 to August 2012 in heavily polluted areas and researched their responses to variation in environmental parameters and their mutual relationship. As indicated by Time-lag analysis (TLA), the long-term dynamics of phytoplankton and zooplankton were undergoing directional variations, what's more, there exists significant seasonal variations of phytoplankton and zooplankton communities as indicated by Non-Metric Multidimensional scaling (NMDS) methods. Also, Redundancy Analysis (RDA) demonstrated that environmental indicators together accounted for 25.6% and 50.1% variance of phytoplankton and zooplankton, respectively, indicating that environmental variations affected significantly on the temporal dynamics of phytoplankton as well as zooplankton communities. What's more, variance partioning suggested that the major environmental factors influencing variation structures of zooplankton communities were water temperature, concentration of nitrogen, revealing the dominating driving mechanism which shaped the communities of zooplankton. It was also found that there was significant synchronization between zooplankton biomass and phytoplankton biomass (expressed as Chl-a concentration), which suggested that zooplankton respond to changes in dynamic structure of phytoplankton community and can initiate a decrease in phytoplankton biomass through grazing in a few months.
Show more [+] Less [-]Anticipating the impact of pitfalls in kinetic biodegradation parameter estimation from substrate depletion curves of organic pollutants Full text
2019
Escuder-Gilabert, Laura | Martín-Biosca, Yolanda | Sagrado, Salvador | Medina-Hernández, María José
Accurate and reliable estimation of kinetic parameters of pollutant biodegradation processes is essential for environmental and health risk assessment. Common biodegradation models proposed in the literature, such as the nonlinear Monod equation and its simplified versions (e.g. Michaelis-Menten-like and first-order equations), are problematic in terms of accuracy of kinetic parameters due to the parameter correlation. However, a comparison between these models in terms of accuracy and reliability, related to data imprecision, has not been performed in the literature. This task is necessary, mainly because the model selection cannot be straightforward, as shown in this work. To facilitate the comparison, novel statistics summarising the accuracy and reliability of estimations are introduced. The main objective is to establish relationships between these statistics (trough new diagnostic indicators) to limit the probability of pitfalls or to avoid the negative impact of an improper model selection. Such anticipation is an imperative need in the biodegradation modelling framework and, to the best of our knowledge, it has never been performed. In order to account for accuracy, simulated data in realistic conditions are used to highlight the magnitude of pitfalls related to the model selection for estimation of the main kinetic parameters (Kₛ, μₘ and/or Vₘ). Four scenarios related to model selection are compared for the first time and, diagnostic indicators able to anticipate relevant aspects related to accuracy and reliability are introduced. Moreover, first evidences of the impact of measurement errors in other intrinsic Monod parameters (the initial biomass concentration and the microbial yield coefficient, Y), as well as the impact of the simultaneous μₘ, Kₛ and Y estimation, on the accuracy and reliability of the estimations are reported. Despite the pitfalls shown, specific applicability of even unreliable models is highlighted, and suggestions for environmental and health risk modellers are provided accordingly.
Show more [+] Less [-]