Refine search
Results 751-760 of 7,975
Pelletized adsorbent of alum sludge and bentonite for removal of arsenic
2021
Jo, Jung-Yeol | Choi, Jeong-Hwan | Tsang, Yiu Fai | Baek, Kitae
Powder adsorbents show an excellent adsorption capacity for arsenic(As) due to the large specific surface area. However, the performance of powder adsorbents decreases significantly by channeling in the adsorption bed, and the powder is released from the bed. Pelletization of power adsorbent can solve the problems, and bentonite was proposed as a binder to improve the strength. The adsorption capacity and lifetime of pelletized adsorbent were evaluated through a batch and column study. The addition of bentonite decreased adsorption capacity by 16% of pellet without bentonite, but improved compressive strength of adsorbent up to 3.6 times. In the batch test, the maximum adsorption capacity of pelletized adsorbent is 22.2 mg As/g, which is about 40% of powder adsorbent. However, in the column study, pellet adsorbent showed similar adsorption performance and lifetime to commercial and powder adsorbent. As a result, the pellet adsorbent using bentonite is a potential low-cost adsorbent to remove effectively As in the aqueous phase.
Show more [+] Less [-]Ambient air pollution and stillbirth: An updated systematic review and meta-analysis of epidemiological studies
2021
Zhang, Huanhuan | Zhang, Xiaoan | Wang, Qiong | Xu, Yuanzhi | Feng, Yang | Yu, Zengli | Huang, Cunrui
Stillbirth has a great impact on contemporary and future generations. Increasing evidence show that ambient air pollution exposure is associated with stillbirth. However, previous studies showed inconsistent findings. To clarify the effect of maternal air pollution exposure on stillbirth, we searched for studies examining the associations between air pollutants, including particulate matter (diameter ≤ 2.5 μm [PM₂.₅] and ≤10 μm [PM₁₀]) and gaseous pollutants (sulfur dioxide [SO₂], nitrogen dioxide [NO₂], carbon monoxide [CO] and ozone [O₃]), and stillbirth published in PubMed, Web of Science, Embase and Cochrane Library until December 11, 2020. The pooled effect estimates and 95% confidence intervals (CI) were calculated, and the heterogeneity was evaluated using Cochran’s Q test and I² statistic. Publication bias was assessed using funnel plots and Egger’s tests. Of 7546 records, 15 eligible studies were included in this review. Results of long-term exposure showed that maternal third trimester PM₂.₅ and CO exposure (per 10 μg/m³ increment) increased the odds of stillbirth, with estimated odds ratios (ORs) of 1.094 (95% CI: 1.008–1.180) and 1.0009 (95% CI: 1.0001–1.0017), respectively. Entire pregnancy exposure to PM₂.₅ was also associated with stillbirth (OR: 1.103, 95% CI: 1.074–1.131). A 10 μg/m³ increment in O₃ in the first trimester was associated with stillbirth, and the estimated OR was 1.028 (95% CI: 1.001–1.055). Short-term exposure (on lag day 4) to O₃ was also associated with stillbirth (OR: 1.002, 95% CI: 1.001–1.004). PM₁₀, SO₂ and NO₂ exposure had no significant effects on the incidence of stillbirth. Additional well-designed cohort studies and investigations regarding potential biological mechanisms are warranted to elaborate the suggestive association that may help improve intergenerational inequality.
Show more [+] Less [-]Redistribution of mineral phases of incineration bottom ash by size and magnetic separation and its effects on the leaching behaviors
2021
Yin, Ke | Chan, Wei Ping | S/O Tamilselvam, Kumaran | Chen, Wen Qian | Mohamad Latiff, Naziah Binte | Heberlein, Stephan | Lisak, Grzegorz
Size and magnetic separation of incineration bottom ash (IBA) are common for ferrous metals recovery, however, their influences on the mineral phase and the element redistribution, and subsequently the induced variation of metal leaching potential herein remain limited understanding. The lack of research in this field may misunderstand IBA performances, cause confused results for comparison among various studies, and potentially lead to biased conclusions. We herein quantitatively investigate the effects of size and magnetic separation on the IBA based on element distribution, leaching behavior, morphology, and mineralogy with statistical analysis. For preparation, sieving was performed with the original IBA (to obtain 7 size-fractions termed as OR1-7, respectively), followed by magnetic separation of each, to further yield magnetic fractions (MF1-7) to discriminate nonmagnetic fractions (NF1-7). In this study, we show that size and magnetic separation may pose significant yet different impacts on different fractions, which would affect their leaching potential concerning their respective downstream applications.
Show more [+] Less [-]Particulate characteristics of low-temperature combustion (PCCI and RCCI) strategies in single cylinder research engine for developing sustainable and cleaner transportation solution
2021
Agarwal, Avinash Kumar | Singh, Akhilendra Pratap | Kumar, Vikram
In this experimental study, particulate matter (PM) characterizations of different low-temperature combustion (LTC) strategies have been compared with conventional compression ignition (CI) combustion for finding out a sustainable and cleaner transport solution. LTC strategies included premixed charge compression ignition (PCCI) and reactivity-controlled compression ignition (RCCI) combustion. Particulate sampling and characterization were carried out in a single-cylinder diesel engine. All engine tests were performed at 1, 2, 3, 4 bar brake mean effective pressure (BMEP) at 1500 rpm. CI and PCCI combustion experiments were performed using mineral diesel as the test fuel. However, mineral diesel and methanol were used as high reactivity fuel (HRF) and low reactivity fuel (LRF), respectively in the RCCI combustion strategy. For all combustion strategies, fuel injection pressure (FIP) was kept constant at 500 bar. However, the number of injections and start of injection (SoI) timings were varied to optimize the engine performance. Results showed that the RCCI combustion strategy emitted a relatively lower concentration of particles than the other two strategies (PCCI and CI). A relatively higher number concentration of accumulation mode particles (AMP) compared to nucleation mode particles (NMP) in the exhaust of the RCCI combustion strategy was an important finding of this study. Number-size and mass-size distributions of particles emitted from different strategies also exhibited the dominant concentration of particles in the CI combustion strategy. PM bound trace metal analysis was yet another critical aspect of this study, which showed that both RCCI and PCCI strategies emitted a relatively lower concentration of trace metals than the conventional CI combustion strategy. Parametric analysis of different PM characteristics and NOx-PM trade-off analysis also demonstrated the importance of LTC strategies over the conventional CI combustion strategy. Overall, this study demonstrated that all LTC strategies could be used for PM and NOx reduction; however, the RCCI combustion strategy was more dominant in NOx and PM reduction, in addition to having an excellent capability of using alternative fuel in the quest for developing sustainable transport solution.
Show more [+] Less [-]The effects of vehicular emissions on the activity and diversity of the roadside soil microbial community
2021
De Silva, Shamali | Ball, A. S. | Shahsavari, Esmaeil | Indrapala, Demidu V. | Reichman, Suzie M.
Motor vehicles emit a variety of pollutants including metals, petroleum hydrocarbons and polycyclic aromatic hydrocarbons (PAHs). The relationships between metals, petroleum hydrocarbons and PAHs, soil respiration and microbial diversity (fungi and bacteria) were studied using control (n = 3) and roadside soils (n = 27) with different exposure periods to vehicle emissions (2–63 years). Bacterial diversity was found to be higher than control sites (P = 0.002) but was the same across different categories of road age (P = 0.328). Significant (r = −0.49, P = 0.007) contrasting behaviour of fungal and bacterial diversity was reported, with diversity increasing across all road types for bacteria and decreasing across all road types for fungi compared to control soils. Analysis of the bacterial community identified three distinct clusters, separated on age of contamination, suggesting that roadside bacterial communities change over time with pollution from vehicles with the potential development of metal resistant bacteria in roadside soils. In contrast, for fungal communities, a reduction in diversity with time of exposure to roadside vehicle emissions was observed suggesting the potential for reduced ecosystem functionality and soil health in roadside soils. This is the first study in the published literature to include both bacterial and fungal responses from aged roadside soils. The results from this study suggest that normal functionality of soil ecosystem services is being affected in roadside soils, potentially globally.
Show more [+] Less [-]Predictive model for cadmium uptake by maize and rice grains on the basis of bioconcentration factor and the diffusive gradients in thin-films technique
2021
Chen, Rui | Cheng, Nuo | Ding, Guoyu | Ren, Fumin | Lv, Jungang | Shi, Rongguang
It is possible for heavy metals in soils to be adsorbed by crop roots and then accumulated in crops, which eventually causes great health risk when the crops are ingested by humans. Thus, it is valuable to understand the enrichment model of heavy metals in crops. Diffusive gradients in thin-films (DGT) technique, as an in-situ passive sampling method, can be used to evaluate the bioavailable heavy metals contents in soils. In this study, data of the bioavailable cadmium (Cd) in soils determined by DGT and Cd contents uptake in rice and maize grains in Tianjin, Zhejiang and Guangxi provinces of China were collected from previous references in Web of Science. By comparing bioconcentration factors, it was found that the heavy metal concentrations accumulated in rice and maize followed a general order roots > stems or leaves > grains. An accurate and robust model for the prediction of Cd content in maize and rice grains was established based on bioconcentration factor (BCF) and the bioavailable Cd content determined by DGT method, with R² 0.986 and root mean square error (RMSE) 0.128. This result suggests that the DGT method can be good tool for predicting heavy metals uptake in crops.
Show more [+] Less [-]Ozone and SOA formation potential based on photochemical loss of VOCs during the Beijing summer
2021
Zhan, Junlei | Feng, Zeming | Liu, Pengfei | He, Xiaowei | He, Zhouming | Chen, Tianzeng | Wang, Yafei | He, Hong | Mu, Yujing | Liu, Yongchun
Volatile organic compounds (VOCs) are easily degraded by oxidants during atmospheric transport. Therefore, the contribution of VOCs to ozone (O₃) and secondary organic aerosol (SOA) formation at a receptor site is different from that in a source area. In this study, hourly concentrations of VOCs and other pollutants, such as O₃, NOx, HONO, CO, and PM₂.₅, were measured in the suburbs (Daxing district) of Beijing in August 2019. The photochemical initial concentrations (PICs), in which the photochemical losses of VOCs were accounted for, were calculated to evaluate the contribution of the VOCs to O₃ and SOA formation. The mean (±standard deviation) measured VOC concentrations and the PICs were 11.2 ± 5.7 and 14.6 ± 8.4 ppbv, respectively, which correspond to O₃ formation potentials (OFP) of 57.8 ± 26.3 and 103.9 ± 109.4 ppbv and SOA formation potentials (SOAP) of 8.4 ± 4.1 and 10.3 ± 7.4 μg m⁻³, respectively. Alkenes contributed 80.5% of the consumed VOCs, followed by aromatics (13.3%) and alkanes (6.2%). The contributions of the alkenes and aromatics to the OFPPICₛ were 56.8% and 30.3%, respectively; while their corresponding contributions to the SOAPPICₛ were 1.9% and 97.3%, respectively. The OFPPICₛ was linearly correlated with the observed O₃ concentrations (OFPPICₛ = 41.5 + 1.40 × cO₃, R² = 0.87). The O₃ formation was associated with a VOC-limited regime at the receptor site based on the measured VOCs and changed to a transition regime and a NOx sensitive regime based on the PIC. Our results suggest that more attention should be paid to biogenic VOCs when studying O₃ formation in summer in Beijing, while the control of anthropogenic aromatic compounds should be given priority in terms of SOA formation.
Show more [+] Less [-]Role of semi-volatile particulate matter in gas-particle partitioning leading to change in oxidative potential
2021
Gali, Nirmal Kumar | Stevanovic, Svetlana | Brown, Reece Alexander | Ristovski, Zoran | Ning, Zhi
Atmospheric semi-volatile organic compounds (SVOCs) are complex in their chemical and toxicological characteristics with sources from both primary combustion emissions and secondary oxygenated aerosol formation processes. In this study, thermal desorption of PM₂.₅ in association with online measurement of reactive oxygen species (ROS) was carried out to study the role of SVOCs in its gas-particle partitioning. The mass concentrations of PM₂.₅, black carbon (BC) and p-PAHs downstream of a thermodenuder were measured online at different temperature settings (25, 50, 100, and 200 °C) to characterize PM physico-chemical properties. While the mass concentrations of PM₂.₅ and p-PAHs reduced to ∼34% at 200 °C compared to that in ambient temperature, BC mass concentration has decreased by 30% at the highest temperature. Furthermore, the submicron particle size distribution showed reduced particle number concentration in Aitken mode at 200 °C heating. The ROS, measured by Particle-into-Nitroxide-Quencher, also showed reduction and followed a similar trend with PM measurements, where the total ROS decreased by 12%, 31%, and 53% at 50 °C, 100 °C, and 200 °C, respectively, compared to the ambient sample. When a HEPA filter was included in the upstream of samples, 39% of gas phase ROS reduction was observed at 200 °C. This provided a good estimate of the contribution of SVOCs in ROS production in PM₂.₅, where decreased SVOCs concentration at 200 °C increased the percentage of particle surface area. This concludes that the surface chemistry of these organic coatings on the particles is important for assessing the health impacts of PM.
Show more [+] Less [-]Personal exposure to equivalent black carbon in children in Milan, Italy: Time-activity patterns and predictors by season
2021
Boniardi, Luca | Dons, Evi | Longhi, Francesca | Scuffi, Chiara | Campo, Laura | Van Poppel, Martine | Int Panis, Luc | Fustinoni, Silvia
Air pollution is a global threat to public health, especially when considering susceptible populations, such as children. A better understanding of determinants of exposure could help epidemiologists in refining exposure assessment methods, and policy makers in identifying effective mitigation interventions. Through a participatory approach, 73 and 89 schoolchildren were involved in a two-season personal exposure monitoring campaign of equivalent black carbon (EBC) in Milan, Italy. GPS devices, time-activity diaries and a questionnaire were used to collect personal information. Exposure to EBC was 1.3 ± 1.5 μg/m³ and 3.9 ± 3.3 μg/m³ (mean ± sd) during the warm and the cold season, respectively. The highest peaks of exposure were detected during the home-to-school commute. Children received most of their daily dose at school and home (82%), but the highest dose/time intensity was related to transportation and outdoor environments. Linear mixed-effect models showed that meteorological variables were the most influencing predictors of personal exposure and inhaled dose, especially in the cold season. The total time spent in a car, duration of the home-to-school commute, and smoking habits of parents were important predictors as well. Our findings suggest that seasonality, time-activity and mobility patterns play an important role in explaining exposure patterns. Furthermore, by highlighting the contribution of traffic rush hours, transport-related microenvironments and traffic-related predictors, our study suggests that acting on a local scale could be an effective way of lowering personal exposure to EBC and inhaled dose of children in the city of Milan.
Show more [+] Less [-]Chlorinated paraffins (SCCPs and MCCPs) in corals and water-SPM-sediment system in the Persian Gulf, Iran: A potential global threat for coral reefs
2021
Ranjbar Jafarabadi, Ali | Dashtbozorg, Mehdi | Raudonytė-Svirbutavičienė, Eva | Riyahi Bakhtiari, Alireza
Swift degradation of the coral reef ecosystems urges the need to identify the reef decline drivers. Due to their widespread use, bioaccumulative and toxic characteristics, chlorinated organic compounds, such as chlorinated paraffins (CPs), are regarded as specific pollutants of concern. Yet little is known about the occurrence of CPs in the coral reef ecosystems. This study focuses on the short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs). Their distribution and congener pattern were investigated in the water-SPM-sediment system and in the corals of the Larak coral reef for the first time. Chlorinated paraffins were detected in all the coral species. Their total loadings ranged from 42.1 to 178 ng g⁻¹ dw in coral tissue, from 6.0 to 144 ng g⁻¹dw in the skeleton, and from 55.0 to 240 ng g⁻¹dw in zooxanthellae. Soft corals were found to accumulate more CPs than Scleractinian corals. Zooxanthellae and mucus accumulated more CPs than tissue and skeleton. In most cases, congener group patterns were dominated by C₁₃ (for SCCPs) and C₁₇ (MCCPs) groups, respectively. The congener patterns of CPs altered to some extent between mucus and the remaining coral compartments. High loadings of CPs were detected in the skeleton of the bleached corals. Moreover, a significant negative correlation between the levels of CPs and the symbiodinium density was observed.
Show more [+] Less [-]