Refine search
Results 761-770 of 4,307
Metals in the Scheldt estuary: From environmental concentrations to bioaccumulation Full text
2017
Van Ael, Evy | Blust, Ronny | Bervoets, Lieven
To investigate the relationship between metal concentrations in abiotic compartments and in aquatic species, sediment, suspended matter and several aquatic species (Polychaeta, Oligochaeta, four crustacean species, three mollusc species and eight fish species) were collected during three seasons at six locations along the Scheldt estuary (the Netherlands-Belgium) and analysed on their metal content (Ag, Cd, Co, Cr, Cu, Ni, Pb, Zn and the metalloid As). Sediment and biota tissue concentrations were significantly influenced by sampling location, but not by season. Measurements of Acid Volatile Sulphides (AVS) concentrations in relation to Simultaneously Extracted Metals (SEM) in the sediment suggested that not all metals in the sediment will be bound to sulphides and some metals might be bioavailable.For all metals but zinc, highest concentrations were measured in invertebrate species; Ag and Ni in periwinkle, Cr, Co and Pb in Oligochaete worms and As, Cd and Cu in crabs and shrimp. Highest concentrations of Zn were measured in the kidney of European smelt. In fish, for most of the metals, the concentrations were highest in liver or kidney and lowest in muscle. For Zn however, highest concentrations were measured in the kidney of European smelt. For less than half of the metals significant correlations between sediment metal concentrations and bioaccumulated concentrations were found (liver/hepatopancreas or whole organism). To calculate the possible human health risk by consumption, average and maximum metal concentrations in the muscle tissues were compared to the minimum risk levels (MRLs). Concentrations of As led to the highest risk potential for all consumable species. Cadmium and Cu posed only a risk when consuming the highest contaminated shrimp and shore crabs. Consuming blue mussel could result in a risk for the metals As, Cd and Cr.
Show more [+] Less [-]Dissipation, occurrence and risk assessment of a phenylurea herbicide tebuthiuron in sugarcane and aquatic ecosystems in South China Full text
2017
Qian, Yuan | Matsumoto, Haruna | Liu, Xiaoyu | Li, Shuying | Liang, Xiao | Liu, Yanan | Zhu, Guonian | Wang, Mengcen
In this study, a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method coupled with UPLC-QqQ-MS/MS analysis was developed to detect tebuthiuron in sugarcane fields and the surrounding aquatic ecosystems. Methodological validation showed the method developed was of favorable sensitivity, reproducibility and accuracy. For assessment of its dietary and ecological risks, dissipation and occurrence of tebuthiuron in situ were further investigated through a supervised field trial and an aquatic environment monitoring carried out in six dominant sugarcane production regions in South China. After application at the range of recommended dose, tebuthiuron dominantly distributed in soil, and then dissipated in accordance with the first-order rate model with the half-lives of 12.2–21.5 d. At pre-harvest intervals (PHI), occurrence of tebuthiuron was found to be 0.718–1.366 mg/kg and 0.016–0.034 mg/kg, in sugarcane and soil, respectively. The supervised trials median residue (STMR) of tebuthiuron in sugarcane was thus 0.024 mg/kg and the dietary Risk Quotient (RQd) was accordingly calculated as 2.34 × 10−4, indicating safety on long-term consumption of sugarcane with tebuthiuron residues. Yet high risks of tebuthiuron towards soil ecosystems was noticed as it possessed maximum ecological Risk Quotient (RQe) at 1.97 to earthworms. In sugarcane field-surrounding aquatic environment, distribution of tebuthiuron was found to range from 0.007 mg/L to 0.022 mg/L, leading to high risk towards the aquatic ecosystem due to the maximum RQe at 440 to algae, irrespective of its low risks to invertebrate and fish. Taken together, our approach serve as an effective tool for monitoring residual tebuthiuron environmentally and also advance in-depth understanding of dietary and ecological risks posed by the phenylurea herbicide.
Show more [+] Less [-]Volcanogenic SO2, a natural pollutant: Measurements, modeling and hazard assessment at Vulcano Island (Aeolian Archipelago, Italy) Full text
2017
Granieri, Domenico | Vita, Fabio | Inguaggiato, Salvatore
Sulfur dioxide (SO2) is a major component of magmatic gas discharges. Once emitted in the atmosphere it can affect the air and land environment at different spatial and temporal scales, with harmful effects on human health and plant communities.We used a dense dataset of continuous SO2 flux and meteorological measurements collected at Vulcano over an 8-year period spanning from May 2008 to February 2016 to model air SO2 concentrations over the island. To this end, we adopted the DISGAS (DISpersion of GAS) numerical code coupled with the Diagnostic Wind Model (DWM). SO2 concentrations in air were determined for three different SO2 emission rates: a reference SO2 flux of ∼18 t/d (the median of more than 800 measurements), an enhanced SO2 flux of 40 t/d (average of all measurements plus 1 σ), and a maximum SO2 flux of 106 t/d (maximum value measured in the investigated period). Maximum SO2 concentrations in air were estimated at the crater, near the high-T fumarole field that is the source of the gas, and ranged from 2000 ppb to ∼24,000 ppb for the reference flux, from 2000 ppb to 51,000 ppb for the enhanced flux and from 5000 ppb to 136,000 ppb for the maximum flux, with peak values in limited areas at the bottom of the crater. These concentrations pose a hazard for people visiting the crater, for sensitive individuals in particular. Based on estimated SO2 concentrations in air, we also consider the phytotoxic effects of SO2 on local vegetation.
Show more [+] Less [-]Source-oriented risk assessment of inhalation exposure to ambient polycyclic aromatic hydrocarbons and contributions of non-priority isomers in urban Nanjing, a megacity located in Yangtze River Delta, China Full text
2017
Zhuo, Shaojie | Shen, Guofeng | Zhu, Ying | Du, Wei | Pan, Xuelian | Li, Tongchao | Han, Yang | Li, Bengang | Liu, Junfeng | Cheng, Hefa | Xing, Baoshan | Tao, Shu
Sixteen U.S. EPA priority polycyclic aromatic hydrocarbons (PAHs) and eleven non-priority isomers including some dibenzopyrenes were analyzed to evaluate health risk attributable to inhalation exposure to ambient PAHs and contributions of the non-priority PAHs in a megacity Nanjing, east China. The annual average mass concentration of the total 16 EPA priority PAHs in air was 51.1 ± 29.8 ng/m³, comprising up to 93% of the mass concentration of all 27 PAHs, however, the estimated Incremental Lifetime Cancer Risk (ILCR) due to inhalation exposure would be underestimated by 63% on average if only accounting the 16 EPA priority PAHs. The risk would be underestimated by 13% if only particulate PAHs were considered, though gaseous PAHs made up to about 70% of the total mass concentration. During the last fifteen years, ambient Benzo[a]pyrene decreased significantly in the city which was consistent with the declining trend of PAHs emissions. Source contributions to the estimated ILCR were much different from the contributions for the total mass concentration, calling for the introduce of important source-oriented risk assessments. Emissions from gasoline vehicles contributed to 12% of the total mass concentration of 27 PAHs analyzed, but regarding relative contributions to the overall health risk, gasoline vehicle emissions contributed 45% of the calculated ILCR. Dibenzopyrenes were a group of non-priority isomers largely contributing to the calculated ILCR, and vehicle emissions were probably important sources of these high molecular weight isomers. Ambient dibenzo[a,l]pyrene positively correlated with the priority PAH Benzo[g,h,i]perylene. The study indicates that inclusion of non-priority PAHs could be valuable for both PAH source apportionment and health risk assessment.
Show more [+] Less [-]Fluoride concentrations in traditional and herbal teas: Health risk assessment Full text
2017
Das, Suchismita | de Oliveira, Letuzia M. | da Silva, Evandro | Liu, Yungen | Ma, Lena Q.
Traditional tea (Camellia sinensis) and herbal tea are being consumed across the world. However, long term consumption of tea can increase the chances of fluorosis owing to the presence of fluoride (F) in teas. Therefore, it is imperative to assess the health risk associated with tea consumption. The main objectives of this study were to: 1) estimate total F in 47 popular teas, including traditional and herbal teas and F concentrations in 1% (w/v) infusion of 5 min, and 2) assess the exposure risks of F from tea consumption in children and adults. The data showed that total F was the least in herbal teas (33–102 mg/kg) and their infusions (0.06–0.69 mg/L) compared to traditional teas (296–1112 mg/kg) and their infusions (1.47–6.9 mg/L). During tea infusion, 6–96% and 18–99% of the F was released into the water from herbal and traditional teas, respectively. Ten samples of traditional teas, including five green teas had chronic daily intake (CDI) values of F > 0.05 mg/d/kg bw, the stipulated permissible limits of F intake from all sources. Although the F from teas posed no immediate health hazards with hazard quotient <1, some tea samples could potentially contribute >4 mg F/d, thereby adding to the overall F burden. Therefore, together with F from food and water sources, daily F consumptions from teas might increase its health risks to humans. So, caution should be excised when drinking teas containing high F.
Show more [+] Less [-]Perfluoroalkylated acids in the eggs of great tits (Parus major) near a fluorochemical plant in Flanders, Belgium Full text
2017
Groffen, Thimo | Lopez-Antia, Ana | D'Hollander, Wendy | Prinsen, Els | Eens, Marcel | Bervoets, Lieven
Perfluoroalkyl acids (PFAAs) are highly persistent substances which have been detected in wildlife around the world, including birds. Although bird eggs have often been used to determine and monitor PFAAs levels in the marine environment, this has rarely been done in the terrestrial environment. In the present study we examined the concentrations and composition profile of 12 PFAAs (4 perfluoroalkyl sulfonic acids (PFSAs) and 8 perfluoroalkyl carboxylic acids (PFCAs) in the eggs of great tits (Parus major) collected at a fluorochemical plant and in three other areas, representing a gradient in distance from the pollution source (from 1 to 70 km), in Antwerp, Belgium.The PFSA concentrations measured at the site of the fluorochemical plant were among the highest ever reported in eggs with median concentrations of 10380 ng/g (extrapolated), 99.3 ng/g and 47.7 ng/g for PFOS, PFHxS and PFDS respectively. Furthermore, the median concentration of 19.8 ng/g for PFOA was also among the highest ever reported in bird eggs. Although these concentrations decreased sharply with distance from the fluorochemical plant, levels found in the adjacent sites were still high compared to what has been reported in literature. Moreover, based on what is known in literature, it is likely that these concentrations may cause toxicological effects. PFOS was the dominant contributor to the PFSA and PFAAs (63.4–97.6%) profile at each site, whereas for PFCAs this was PFOA at the plant site and the nearest locations (41.0–52.8%) but PFDoA (37.7%) at the farthest location.Although there is some evidence that PFAAs concentrations close to the plant site are decreasing in comparison with earlier measurements, which may be due to the phase out of PFOS, more research is necessary to understand the extent of the toxicological effects in the vicinity of this PFAAs hotspot.
Show more [+] Less [-]PM2.5-bound metal metabolic distribution and coupled lipid abnormality at different developmental windows Full text
2017
Ku, Tingting | Zhang, Yingying | Ji, Xiaotong | Li, Guangke | Sang, Nan
Atmospheric fine particulate matter (PM2.5) is a serious threat to human health. As a toxicant constituent, metal leads to significant health risks in a population, but exposure to PM2.5-bound metals and their biological impacts are not fully understood. In this study, we determined the metal contents of PM2.5 samples collected from a typical coal-burning city and then investigated the metabolic distributions of six metals (Zn, Pb, Mn, As, Cu, and Cd) following PM2.5 inhalation in mice in different developmental windows. The results indicate that fine particles were mainly deposited in the lung, but PM2.5-bound metals could reach and gather in secondary off-target tissues (the lung, liver, heart and brain) with a developmental window-dependent property. Furthermore, elevations in triglycerides and cholesterol levels in sensitive developmental windows (the young and elderly stages) occurred, and significant associations between metals (Pb, Cd, Mn, and As) and cholesterol in the heart, brain and liver were observed. These findings suggest that PM2.5 inhalation caused selective metal metabolic distribution in tissues with a developmental window-dependent property and that the effects were associated with lipid alterations. This provides a foundation for the underlying systemic toxicity following PM2.5 exposure based on metal components.
Show more [+] Less [-]Spatio-temporal variations in PM leaf deposition: A meta-analysis Full text
2017
Cai, Mengfan | Xin, Zhongbao | Yu, Xinxiao
Particulate matter (PM) pollution in urban cities is of great concern for public health due to its global and adverse effect of human health while ecosystems function and vegetation control is an effective and eco-friendly way to alleviate PM pollution. We reviewed 150 studies conducted in 15 countries that were published between 1960 and 2016 and used a meta-analysis to examine the time trends and regional differences in leaf deposited PM of urban greening plants. The results suggested that the weekly PM leaf deposition varied markedly with both plant species and space-time and the average value was 1.71 ± 0.05 g m⁻²·wk⁻¹, and the variations occurred because of vegetation factors, characteristics of the PM source and meteorological factors. Moreover, fine particulate matter accounts for the minimum proportion of the total PM mass but its number ratio is maximum, more than 90% of the total number of particles. This meta-analysis illustrated the spatio-temporal trends and variations in PM leaf deposition and the influencing factors, which provides a scientific basis for the mechanism of PM deposition on leaf surface as well as plant selection and configuration in urban greening.
Show more [+] Less [-]Inter-species and intra-annual variations of moss nitrogen utilization: Implications for nitrogen deposition assessment Full text
2017
Dong, Yu-Ping | Liu, Xue-Yan | Sun, Xin-Chao | Song, Wei | Zheng, Xu-Dong | Li, Rui | Liu, Cong-Qiang
Moss nitrogen (N) concentrations and natural 15N abundance (δ15N values) have been widely employed to evaluate annual levels and major sources of atmospheric N deposition. However, different moss species and one-off sampling were often used among extant studies, it remains unclear whether moss N parameters differ with species and different samplings, which prevented more accurate assessment of N deposition via moss survey. Here concentrations, isotopic ratios of bulk carbon (C) and bulk N in natural epilithic mosses (Bryum argenteum, Eurohypnum leptothallum, Haplocladium microphyllum and Hypnum plumaeforme) were measured monthly from August 2006 to August 2007 at Guiyang, SW China. The H. plumaeforme had significantly (P < 0.05) lower bulk N concentrations and higher δ13C values than other species. Moss N concentrations were significantly (P < 0.05) lower in warmer months than in cooler months, while moss δ13C values exhibited an opposite pattern. The variance component analyses showed that different species contributed more variations of moss N concentrations and δ13C values than different samplings. Differently, δ15N values did not differ significantly between moss species, and its variance mainly reflected variations of assimilated N sources, with ammonium as the dominant contributor. These results unambiguously reveal the influence of inter-species and intra-annual variations of moss N utilization on N deposition assessment.
Show more [+] Less [-]Complex mixtures of Pesticides in Midwest U.S. streams indicated by POCIS time-integrating samplers Full text
2017
Van Metre, Peter C. | Alvarez, David A. | Mahler, Barbara J. | Nowell, Lisa | Sandstrom, Mark | Moran, Patrick
The Midwest United States is an intensely agricultural region where pesticides in streams pose risks to aquatic biota, but temporal variability in pesticide concentrations makes characterization of their exposure to organisms challenging. To compensate for the effects of temporal variability, we deployed polar organic chemical integrative samplers (POCIS) in 100 small streams across the Midwest for about 5 weeks during summer 2013 and analyzed the extracts for 227 pesticide compounds. Analysis of water samples collected weekly for pesticides during POCIS deployment allowed for comparison of POCIS results with periodic water-sampling results. The median number of pesticides detected in POCIS extracts was 62, and 141 compounds were detected at least once, indicating a high level of pesticide contamination of streams in the region. Sixty-five of the 141 compounds detected were pesticide degradates. Mean water concentrations estimated using published POCIS sampling rates strongly correlated with means of weekly water samples collected concurrently, however, the POCIS-estimated concentrations generally were lower than the measured water concentrations. Summed herbicide concentrations (units of ng/POCIS) were greater at agricultural sites than at urban sites but summed concentrations of insecticides and fungicides were greater at urban sites. Consistent with these differences, summed concentrations of herbicides correlate to percent cultivated crops in the watersheds and summed concentrations of insecticides and fungicides correlate to percent urban land use. With the exception of malathion concentrations at nine sites, POCIS-estimated water concentrations of pesticides were lower than aquatic-life benchmarks. The POCIS provide an alternative approach to traditional water sampling for characterizing chronic exposure to pesticides in streams across the Midwest region.
Show more [+] Less [-]