Refine search
Results 781-790 of 3,991
Fate of radiolabeled C60 fullerenes in aged soils
2016
Navarro, Divina A. | Kookana, Rai S. | McLaughlin, Mike J. | Kirby, Jason K.
Fullerenes (e.g. C60, C70, etc.) present in soil may undergo changes in its retention with aging. In this study, the partitioning behavior of (14C)-C60 aged up to 12 weeks was investigated in biosolids-amended soil. Spiked samples were subjected to sequential partitioning using water, methanol, and toluene followed by total combustion of solids; the distribution of 14C across solvents and matrices were used to provide insights on C60 behavior. In most samples, 14C only partitioned in toluene with the remaining (non-extractable) activity detected in the solid phase. In all biosolids-amended soil samples, an increase in non-extractable 14C were observed for those exposed to light (vs dark) with the greatest difference observed in biosolids + sand samples. Possible processes that contribute to the observed 14C distribution, i.e. retention and potential transformation of C60, were discussed. Over-all, results suggest that environmental exposure to C60 and potentially transformed C60 species, as a result of their release from soils, is likely to be low.
Show more [+] Less [-]Endosulfan inhibits proliferation through the Notch signaling pathway in human umbilical vein endothelial cells
2016
Wei, Jialiu | Zhang, Lianshuang | Ren, Lihua | Zhang, Jin | Yu, Yang | Wang, Ji | Duan, Junchao | Peng, Cheng | Sun, Zhiwei | Zhou, Xianqing
Our previous research showed that endosulfan triggers the extrinsic coagulation pathway by damaging endothelial cells and causes hypercoagulation of blood. To identify the mechanism of endosulfan-impaired endothelial cells, we treated human umbilical vein endothelial cells (HUVECs) with different concentrations of endosulfan, with and without an inhibitor for Notch, N-[N-(3, 5-difluorophenacetyl)-1-alanyl]S-Phenylglycinet-butylester (DAPT, 20 μM), or a reactive oxygen species (ROS) scavenger, N-Acetyl-l-cysteine (NAC, 3 mM), for 24 h. The results showed that endosulfan could inhibit cell viability/proliferation by increasing the release of lactate dehydrogenase (LDH), arresting the cell cycle in both S and G2/M phases, and inducing apoptosis in HUVECs. We also found that endosulfan can damage microfilaments, microtubules, and nuclei; arrest mitosis; remarkably increase the expressions of Dll4, Notch1, Cleaved-Notch1, Jagged1, Notch4, Hes1, and p21; and significantly induce ROS and malondialdehyde production in HUVECs. The presence of DAPT antagonized the above changes of cycle arrest, proliferation inhibition, and expressions of Dll4, Notch1, Cleaved-Notch1, Hes1, and p21 caused by endosulfan; however, NAC could attenuate LDH release; ROS and malondialdehyde production; apoptosis; and the expression levels of Dll4, Notch1, Cleaved-Notch1, Notch4, and Hes1 induced by endosulfan. These results demonstrated that endosulfan inhibited proliferation through the Notch signaling pathway as a result of oxidative stress. In addition, endosulfan can damage the cytoskeleton and block mitosis, which may add another layer of toxic effects on endothelial cells.
Show more [+] Less [-]Integrative transcriptomic and protein analysis of human bronchial BEAS-2B exposed to seasonal urban particulate matter
2016
Longhin, Eleonora | Capasso, Laura | Battaglia, Cristina | Proverbio, Maria Carla | Cosentino, Cristina | Cifola, Ingrid | Mangano, Eleonora | Camatini, Marina | Gualtieri, M. (Maurizio)
Exposure to particulate matter (PM) is associated with various health effects. Physico-chemical properties influence the toxicological impact of PM, nonetheless the mechanisms underlying PM-induced effects are not completely understood.Human bronchial epithelial cells were used to analyse the pathways activated after exposure to summer and winter urban PM and to identify possible markers of exposure.BEAS-2B cells were exposed for 24 h to 10 μg/cm² of winter PM2.5 (wPM) and summer PM10 (sPM) sampled in Milan. A microarray technology was used to profile the cells gene expression. Genes and microRNAs were analyzed by bioinformatics technique to identify pathways involved in cellular responses. Selected genes and pathways were validated at protein level (western blot, membrane protein arrays and ELISA).The molecular networks activated by the two PM evidenced a correlation among oxidative stress, inflammation and DNA damage responses. sPM induced the release of pro-inflammatory mediators, although miR-146a and genes related to inflammation resulted up-regulated by both PM. Moreover both PM affected a set of genes, proteins and miRNAs related to antioxidant responses, cancer development, extracellular matrix remodeling and cytoskeleton organization, while miR-29c, implicated in epigenetic modification, resulted up-regulated only by wPM. sPM effects may be related to biological and inorganic components, while wPM apparently related to the high content of organic compounds.These results may be helpful for the individuation of biomarkers for PM exposure, linked to the specific PM physico-chemical properties.
Show more [+] Less [-]Temporal trends of mercury in eggs of five sympatrically breeding seabird species in the Canadian Arctic
2016
Braune, Birgit M. | Gaston, Anthony J. | Mallory, Mark L.
We compared temporal trends of total mercury (Hg) in eggs of five seabird species breeding at Prince Leopold Island in the Canadian high Arctic. As changes in trophic position over time have the potential to influence contaminant temporal trends, Hg concentrations were adjusted for trophic position (measured as δ15N). Adjusted Hg concentrations in eggs of thick-billed murres (Uria lomvia) and northern fulmars (Fulmarus glacialis) increased from 1975 to the 1990s, followed by a plateauing of levels from the 1990s to 2014. Trends of adjusted Hg concentrations in eggs of murres, fulmars, black guillemots (Cepphus grylle) and black-legged kittiwakes (Rissa tridactyla) had negative slopes between 1993 and 2013. Adjusted Hg concentrations in glaucous gull (Larus hyperboreus) eggs decreased by 50% from 1993 to 2003 before starting to increase again. Glaucous gull eggs had the highest Hg concentrations followed by black guillemot eggs, and black-legged kittiwake eggs had the lowest concentrations consistently in the five years compared between 1993 and 2013. Based on published toxicological thresholds for Hg in eggs, there is little concern for adverse reproductive effects due to Hg exposure in these birds, although the levels in glaucous gull eggs warrant future scrutiny given the increase in Hg concentrations observed in recent years. There is evidence that the Hg trends observed reflect changing anthropogenic Hg emissions. It remains unclear, however, to what extent exposure to Hg on the overwintering grounds influences the Hg trends observed in the seabird eggs at Prince Leopold Island. Future research should focus on determining the extent to which Hg exposure on the breeding grounds versus the overwintering areas contribute to the trends observed in the eggs.
Show more [+] Less [-]Mercury bioaccumulation in an estuarine predator: Biotic factors, abiotic factors, and assessments of fish health
2016
Smylie, Meredith S. | McDonough, Christopher J. | Reed, Lou Ann | Shervette, Virginia R.
Estuarine wetlands are major contributors to mercury (Hg) transformation into its more toxic form, methylmercury (MeHg). Although these complex habitats are important, estuarine Hg bioaccumulation is not well understood. The longnose gar Lepisosteus osseus (L. 1758), an estuarine predator in the eastern United States, was selected to examine Hg processes due to its abundance, estuarine residence, and top predator status. This study examined variability in Hg concentrations within longnose gar muscle tissue spatially and temporally, the influence of biological factors, potential maternal transfer, and potential negative health effects on these fish. Smaller, immature fish had the highest Hg concentrations and were predominantly located in low salinity waters. Sex and diet were also important factors and Hg levels peaked in the spring. Although maternal transfer occurred in small amounts, the potential negative health effects to young gar remain unknown. Fish health as measured by fecundity and growth rate appeared to be relatively unaffected by Hg at concentrations in the present study (less than 1.3 ppm wet weight). The analysis of biotic and abiotic factors relative to tissue Hg concentrations in a single estuarine fish species provided valuable insight in Hg bioaccumulation, biomagnification, and elimination. Insights such as these can improve public health policy and environmental management decisions related to Hg pollution.
Show more [+] Less [-]The Egyptian Red Sea coastal microbiome: A study revealing differential microbial responses to diverse anthropogenic pollutants
2016
Mustafa, Ghada A. | Abd-Elgawad, Amr | Ouf, Amged | Siam, Rania
The Red Sea is considered one of the youngest oceanic systems, with unique physical, geochemical and biological characteristics. Tourism, industrialization, extensive fishing, oil processing and shipping are extensive sources of pollution in the Red Sea. We analyzed the geochemical characteristics and microbial community of sediments along the Egyptian coast of the Red Sea. Our sites mainly included 1) four ports used for shipping aluminum, ilmenite and phosphate; 2) a site previously reported to have suffered extensive oil spills; and 3) a site impacted by tourism. Two major datasets for the sediment of ten Red Sea coastal sites were generated; i) a chemical dataset included measurements of carbon, hydrogen, nitrogen and sulfur, metals and selected semi-volatile oil; and ii) a 16S rRNA Pyrotags bacterial metagenomic dataset. Based on the taxonomic assignments of the 16S rRNA Pyrotags to major bacterial groups, we report 30 taxa constituting an Egyptian Red Sea Coastal Microbiome. Bacteria that degrade hydrocarbons were predominant in the majority of the sites, particularly in two ports where they reached up to 76% of the total identified genera. In contrast, sulfate-reducing and sulfate-oxidizing bacteria dominated two lakes at the expense of other hydrocarbon metabolizers. Despite the reported “Egyptian Red Sea Coastal Microbiome,” sites with similar anthropogenic pollutants showed unique microbial community abundances. This suggests that the abundance of a specific bacterial community is an evolutionary mechanism induced in response to selected anthropogenic pollutants.
Show more [+] Less [-]Characterization of anthropogenic impacts in a large urban center by examining the spatial distribution of halogenated flame retardants
2016
Wei, Yan-Li | Bao, Lian-Jun | Wu, Chen-Chou | Zeng, E. Y. (Eddy Y.)
Anthropogenic impacts have continuously intensified in mega urban centers with increasing urbanization and growing population. The spatial distribution pattern of such impacts can be assessed with soil halogenated flame retardants (HFRs) as HFRs are mostly derived from the production and use of various consumer products. In the present study, soil samples were collected from the Pearl River Delta (PRD), a large urbanized region in southern China, and its surrounding areas and analyzed for a group of HFRs, i.e., polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane, bis(hexachlorocyclopentadieno)cyclooctane (DP) and hexabromobenzene. The sum concentrations of HFRs and PBDEs were in the ranges of 0.66–6500 and 0.37–5700 (mean: 290 and 250) ng g−1 dry weight, respectively, around the middle level of the global range. BDE-209 was the predominant compound likely due to the huge amounts of usage and its persistence. The concentrations of HFRs were greater in the land-use types of residency, industry and landfill than in agriculture, forestry and drinking water source, and were also greater in the central PRD than in its surrounding areas. The concentrations of HFRs were moderately significantly (r2 = 0.32–0.57; p < 0.05) correlated with urbanization levels, population densities and gross domestic productions in fifteen administrative districts. The spatial distribution of DP isomers appeared to be stereoselective as indicated by the similarity in the spatial patterns for the ratio of anti-DP versus the sum of DP isomers (fanti-DP) and DP concentrations. Finally, the concentrations of HFRs sharply decreased with increasing distance from an e-waste recycling site, indicating that e-waste derived HFRs largely remained in local soil.
Show more [+] Less [-]Measurements of major VOCs released into the closed cabin environment of different automobiles under various engine and ventilation scenarios
2016
Kim, Ki Hyun | Szulejko, Jan E. | Jo, Hyo-Jae | Lee, Min-Hee | Kim, Yong-Hyun | Kwon, Eilhann | Ma, Chang-Jin | Kumar, Pawan
Volatile organic compounds (VOCs) in automobile cabins were measured quantitatively to describe their emission characteristics in relation to various idling scenarios using three used automobiles (compact, intermediate sedan, and large sedan) under three different idling conditions ([1] cold engine off and ventilation off, [2] exterior air ventilation with idling warm engine, and [3] internal air recirculation with idling warm engine). The ambient air outside the vehicle was also analyzed as a reference. A total of 24 VOCs (with six functional groups) were selected as target compounds. Accordingly, the concentration of 24 VOC quantified as key target compounds averaged 4.58 ± 3.62 ppb (range: 0.05 (isobutyl alcohol) ∼ 38.2 ppb (formaldehyde)). Moreover, if their concentrations are compared between different automobile operational modes: the ‘idling engine’ levels (5.24 ± 4.07) was 1.3–5 times higher than the ‘engine off’ levels (4.09 ± 3.23) across all 3 automobile classes. In summary, automobile in-cabin VOC emissions are highly contingent on changes in engine and ventilation modes.
Show more [+] Less [-]Long-term microplastic retention causes reduced body condition in the langoustine, Nephrops norvegicus
2016
Welden, Natalie A.C. | Cowie, Phillip R.
Microplastic represents a rising proportion of marine litter and is widely distributed throughout a range of marine habitats. Correspondingly, the number of reports of species containing microplastics increases annually. Nephrops norvegicus in the Firth of Clyde have previously been shown to retain large aggregations of microplastic fibres. The potential for N. norvegicus to retain plastic over an extended time period increases the likelihood of any associated negative impacts to the individual. This study represents the longest observation of the impacts of microplastic retention in invertebrates. We exposed N. norvegicus to plastic over eight months to determine the impacts of extended exposure. Over this period we compared the feeding rate, body mass, and nutritional state of plastic-fed N. norvegicus to that of fed and starved control groups. Following the experimental period, the plastic-fed langoustine contained microplastic aggregations comparable to those of small individuals from the Clyde Sea Area. Comparisons between fed, unfed and plastic-fed individuals indicated a reduction in feeding rate, body mass, and metabolic rate as well as catabolism of stored lipids in plastic contaminated animals. We conclude that N. norvegicus exposed to high levels of environmental microplastic pollution may experience reduced nutrient availability. This can result in reduced population stability and may affect the viability of local fisheries.
Show more [+] Less [-]Competitive adsorption of Pb and Cd on bacteria–montmorillonite composite
2016
Du, Huihui | Chen, Wenli | Cai, Peng | Rong, Xingmin | Feng, Xionghan | Huang, Qiaoyun
The characteristics and mechanisms of competitive adsorption of trace metals on bacteria-associated clay mineral composites have never been studied, despite their being among the most common organic–mineral complexes in geological systems. Herein, competitive adsorption of Pb and Cd on Pseudomonas putida–montmorillonite composite was investigated through adsorption–desorption experiment, isothermal titration calorimetry (ITC), and synchrotron micro X-ray fluorescence (μ-XRF). From the experiment, stronger competition was observed on clay mineral than on bacteria–clay composite because more non-specific sites accounted for heavy metal adsorption on clay mineral surface at the studied pH 5. Both competing heavy metals tended to react with bacterial fractions in the composite, which was verified by the higher correlation of Cd (and Pb) with Zn (R2 = 0.41) elemental distribution than with Si (R2 = 0.10). ITC results showed that competitive adsorption exhibited a lower entropy change (ΔS) at the metal-sorbent interfaces compared with single-metal adsorption, revealing that Cd and Pb are bound to the same types of adsorption sites on the sorbent. The competitive effect on bacteria–clay composite was found to be helpful for a better understanding on the fixation, remobilization and subsequent migration of heavy metals in multi-metal contaminated environments.
Show more [+] Less [-]