Refine search
Results 791-800 of 4,029
Dry deposition of O3 and SO2 estimated from gradient measurements above a temperate mixed forest
2016
Wu, Zhiyong | Staebler, Ralf | Vet, Robert | Zhang, Leiming
Vertical profiles of O3 and SO2 concentrations were monitored at the Borden Forest site in southern Ontario, Canada from May 2008 to April 2013. A modified gradient method (MGM) was applied to estimate O3 and SO2 dry deposition fluxes using concentration gradients between a level above and a level below the canopy top. The calculated five-year mean (median) dry deposition velocity (Vd) were 0.35 (0.27) and 0.59 (0.54) cm s−1, respectively, for O3 and SO2. Vd(O3) exhibited large seasonal variations with the highest monthly mean of 0.68 cm s−1 in August and the lowest of 0.09 cm s−1 in February. In contrast, seasonal variations of Vd(SO2) were smaller with monthly means ranging from 0.48 (May) to 0.81 cm s−1 (December). The different seasonal variations between O3 and SO2 were caused by the enhanced SO2 uptake by snow surfaces in winter. Diurnal variations showed a peak value of Vd in early morning in summer months for both O3 and SO2. Canopy wetness increased the non-stomatal uptake of O3 while decreasing the stomatal uptake. This also applied to SO2, but additional factors such as surface acidity also played an important role on the overall uptake.
Show more [+] Less [-]Bioaccumulation and metabolomics responses in oysters Crassostrea hongkongensis impacted by different levels of metal pollution
2016
Cao, Chen | Wang, Wen-Xiong
Jiulong River Estuary, located in southern China, was heavily contaminated by metal pollution. In this study, the estuarine oysters Crassostrea hongkongensis were transplanted to two sites with similar hydrological conditions but different levels of metal pollution in Jiulong River Estuary over a six-month period. We characterized the time-series change of metal bioaccumulation and final metabolomics responses of oysters. Following transplantation, all metals (Cd, Cu, Cr, Ni, Pb, and Zn) in the oyster digestive glands had elevated concentrations over time. By the end of six-month exposure, Cu, Zn and Cd were the main metals significantly differentiating the two sites. Using 1H NMR metabolite approach, we further demonstrated the disturbance in osmotic regulation, energy metabolism, and glycerophospholipid metabolism induced by metal contaminations. Six months later, the oysters transplanted in the two sites showed a similar metabolite variation pattern when compared with the initial oysters regardless of different metal levels in the tissues. Interestingly, by comparing the oysters from two sites, the more severely polluted oysters accumulated significantly higher amounts of osmolytes (betaine and homarine) and lower energy storage compounds (glycogen) than the less polluted oysters; these changes could be the potential biomarkers for different levels of metal pollution. Our study demonstrated the complexity of biological effects under field conditions, and NMR metabolomics provides an important approach to detect sensitive variation of oyster inner status.
Show more [+] Less [-]Biomonitoring of air pollution using antioxidative enzyme system in two genera of family Pottiaceae (Bryophyta)
2016
Bansal, Pooja | Verma, Sonam | Srivastava, Alka
Bryophyte particularly mosses, have been found to serve as reliable indicators of air pollution and can serve as bryometers–biological instruments for measuring air pollution. They are remarkable colonizers, as they have the ability to survive in adverse environments and are also particular in their requirement of environmental conditions, which makes them appropriate ecological indicators. The purpose of this study was to evaluate the activity of antioxidative enzymes in two mosses viz., Hyophila rosea R.S. Williams and Semibarbula orientalis (Web.) Wijk. & Marg. and assess their suitability as biomonitors. Three different locations viz., Lucknow University, Residency (contaminated sites) and Dilkusha Garden (reference site) within Lucknow city with different levels of air pollutants were used for comparison. Our results indicate that air pollution caused marked enhancement in activity of antioxidative enzymes viz., catalase, peroxidase and superoxide dismutase. All the three are capable of scavenging reactive oxygen species. In the genus S. orientalis, catalase, peroxidase and superoxide dismutase activity was minimum at the reference site Dilkusha Garden and was significantly higher at the two contaminated sites for catalase and peroxidase, whereas the difference was non significant for superoxide dismutase. In H. rosea the activity of catalase and peroxidase at the three locations was almost similar, however superoxide dismutase activity showed a significant increase in the two contaminated sites when compared to the reference site, the value being highest for Lucknow University site. It was thus observed that the two genera, from the same location, showed difference in the activity of the antioxidative enzymes. Based on our results, we recommend bryophytes as good monitors of air pollution.
Show more [+] Less [-]Birth outcome measures and prenatal exposure to 4-tert-octylphenol
2016
Lv, Shenliang | Wu, Chunhua | Lu, Keng | Qi, Xiaojuan | Xu, Hao | Guo, Jianqiu | Liang, Weijiu | Chang, XiuLi | Wang, Guoquan | Zhou, Zhijun
Exposure to 4-tert-octylphenol (tOP) has been linked with adverse health outcomes in animals and humans, while epidemiological studies about associations between prenatal exposure to tOP and fetal growth are extremely limited. We measured urinary tOP concentrations in 1100 pregnant women before their delivery, and examined whether tOP levels were associated with birth outcomes, including weight, length, head circumference and ponderal index at birth. tOP could be detected in all samples, and the median uncorrected and creatinine-corrected tOP concentrations were 0.90 μg/L (range from 0.25 to 20.05 μg/L) and 1.33 μg/g creatinine (range from 0.15 to 42.49 μg/g creatinine), respectively. Maternal urinary log-transformed tOP concentrations were significantly negatively associated with adjusted birth weight [β (g) = −126; 95% confidence interval (CI): −197, −55], birth length [β (cm) = −0.53; 95% CI:−0.93, −0.14], and head circumference [β (cm) = −0.30; 95% CI: −0.54, −0.07], respectively. Additionally, considering sex difference, these significant negative associations were also found among male neonates, while only higher maternal tOP concentrations were associated with a significant decrease in birth weight among female neonates. This study suggested significant negative associations between maternal urinary tOP concentrations and neonatal sizes at birth, and they differed by neonatal sex. Further epidemiological studies are required to more fully elaborate the associations between prenatal tOP exposure and birth outcomes.
Show more [+] Less [-]Assessing uncertainty in pollutant build-up and wash-off processes
2016
Wijesiri, Buddhi | Egodawatta, Prasanna | McGree, James | Goonetilleke, Ashantha
Assessing build-up and wash-off process uncertainty is important for accurate interpretation of model outcomes to facilitate informed decision making for developing effective stormwater pollution mitigation strategies. Uncertainty inherent to pollutant build-up and wash-off processes influences the variations in pollutant loads entrained in stormwater runoff from urban catchments. However, build-up and wash-off predictions from stormwater quality models do not adequately represent such variations due to poor characterisation of the variability of these processes in mathematical models. The changes to the mathematical form of current models with the incorporation of process variability, facilitates accounting for process uncertainty without significantly affecting the model prediction performance. Moreover, the investigation of uncertainty propagation from build-up to wash-off confirmed that uncertainty in build-up process significantly influences wash-off process uncertainty. Specifically, the behaviour of particles <150 μm during build-up primarily influences uncertainty propagation, resulting in appreciable variations in the pollutant load and composition during a wash-off event.
Show more [+] Less [-]Temporal changes of radiocesium in irrigated paddy fields and its accumulation in rice plants in Fukushima
2016
Yang, Baolu | Onda, Yūichi | Wakiyama, Yoshifumi | Yoshimura, Kazuya | Sekimoto, Hitoshi | Ha, Yiming
About half of the total paddy field area, which is the dominant agricultural land in Fukushima Prefecture, was contaminated by radiocesium released by the Fukushima Daiichi Nuclear Power Plant accident. In this study, we investigated the temporal changes of radiocesium in soil, irrigation water, and rice plant in two adjacent rice paddies, with and without surface-soil-removal, in Fukushima Prefecture for over three years (2012–2014) after the nuclear accident. Our results showed that radiocesium migrated into 24–28 cm soil layers and that the activity concentration of radiocesium in paddy soils showed a significant reduction in 2014. The newly added radiocesium to paddies through irrigation water contributed only a maximum value of 0.15% and 0.75% of the total amount present in control and decontaminated paddies, respectively, throughout the study period. The radiocesium activity concentration in suspended sediment in irrigation water exponentially decreased, and the effective half-lives (Teff) for ¹³⁷Cs and ¹³⁴Cs were 1.3 and 0.9 years, respectively. Additionally, the average suspended sediment concentration in irrigation water increased between 2012 and 2014, suggesting that enhanced soil erosion had occurred in the surrounding environment. Radiocesium accumulation in rice plant also decreased with time in both paddies. However, the concentration ratio of radiocesium for rice plant in the decontaminated paddy increased compared with control paddy, despite approximately 96% of fallout radiocesium removed in paddy soil. Further analysis is required to clarify the reasons of high concentration ratio of radiocesium for rice plant in the decontaminated paddy.
Show more [+] Less [-]Oxidative stress in duckweed (Lemna minor L.) induced by glyphosate: Is the mitochondrial electron transport chain a target of this herbicide?
2016
Gomes, Marcelo Pedrosa | Juneau, Philippe
We investigated the physiological responses of Lemna minor plants exposed to glyphosate. The deleterious effects of this herbicide on photosynthesis, respiration, and pigment concentrations were related to glyphosate-induced oxidative stress through hydrogen peroxide (H2O2) accumulation. By using photosynthetic and respiratory electron transport chain (ETC) inhibitors we located the primary site of reactive oxygen species (ROS) production in plants exposed to 500 mg glyphosate l−1. Inhibition of mitochondrial ETC Complex I by rotenone reduced H2O2 concentrations in glyphosate-treated plants. Complex III activity was very sensitive to glyphosate which appears to act much like antimycin A (an inhibitor of mitochondrial ETC Complex III) by shunting electrons from semiquinone to oxygen, with resulting ROS formation. Confocal evaluations for ROS localization showed that ROS are initially produced outside of the chloroplasts upon initial glyphosate exposure. Our results indicate that in addition to interfering with the shikimate pathway, glyphosate can induce oxidative stress in plants through H2O2 formation by targeting the mitochondrial ETC, which would explain its observed effects on non-target organisms.
Show more [+] Less [-]Enhancing tetrabromobisphenol A biodegradation in river sediment microcosms and understanding the corresponding microbial community
2016
Li, Guiying | Xiong, Jukun | Wong, Po-Keung | An, Taicheng
In situ remediation of contaminated sediment using microbes is a promising environmental treatment method. This study used bioaugmentation to investigate the biodegradation of tetrabromobisphenol A (TBBPA) in sediment microcosms collected from an electronic-waste recycling site. Treatments included adding possible biodegradation intermediates of TBBPA, including 2,4-dibromophenol (2,4-DBP), 2,4,6-tribromophenol (TBP), and bisphenol A (BPA) as co-substrates. Bioaugmentation was done with Ochrobactrum sp. T (TBBPA-degrader) and a mixed culture of Ochrobactrum sp. T, Bacillus sp. GZT (TBP-degrader) and Bacillus sp. GZB (BPA-degrader). Results showed that bioaugmentation with Ochrobactrum sp. T significantly improved TBBPA degradation efficiencies in sediment microcosms (P < 0.01); aerobic conditions increased the microbes' degradation activities. Co-substrates 2,4-DBP, TBP and BPA inhibited biodegradation of TBBPA. A metagenomic analysis of total 16S rRNA genes from the treated sediment microcosms showed that the following dominant genera: Ochrobactrum, Parasegetibacter, Thermithiobacillus, Phenylobacterium and Sphingomonas. The genus level of Ochrobactrum increased with increased degradation time, within 10-week of incubation. Microbes from genus Ochrobactrum are mainly linked to enhance the TBBPA biodegradation.
Show more [+] Less [-]Methane oxidation in heavy metal contaminated Mollic Gleysol under oxic and hypoxic conditions
2016
Walkiewicz, A. | Bulak, P. | Brzezińska, M. | Wnuk, E. | Bieganowski, A.
Soils are the largest terrestrial sink for methane (CH4). However, heavy metals may exert toxicity to soil microorganisms, including methanotrophic bacteria. We tested the effect of lead (Pb), zinc (Zn) and nickel (Ni) on CH4 oxidation (1% v/v) and dehydrogenase activity, an index of the activity of the total soil microbial community in Mollic Gleysol soil in oxic and hypoxic conditions (oxia and hypoxia, 20% and 10% v/v O2, respectively). Metals were added in doses corresponding to the amounts permitted of Pb, Zn, Ni in agricultural soils (60, 120, 35 mg kg−1, respectively), and half and double of these doses. Relatively low metal contents and O2 status reflect the conditions of most agricultural soils of temperate regions. Methane consumption showed high tolerance to heavy metals. The effect of O2 status was stronger than that of metals. CH4 consumption was enhanced under hypoxia, where both the start and the completion of the control and contaminated treatment were faster than under oxic conditions. Dehydrogenase activity, showed higher sensitivity to the contamination (except for low Ni dose), with a stronger effect of heavy metals, than that of the O2 status.
Show more [+] Less [-]Conversion of Fe-rich waste sludge into nano-flake Fe-SC hybrid Fenton-like catalyst for degradation of AOII
2016
Kong, Lingjun | Zhu, Yuting | Liu, Mingxiang | Chang, Xiangyang | Xiong, Ya | Chen, Diyun
Permanently increasing in the amount of sludge resulted in the serious environment burden. This work reports a novel carbothermal process for converting the Fe-rich waste sludge into cleaner nano-flake Fenton-like catalyst to relieve the crisis. The transformation of Fe species at different carbothermal temperature was evaluated by XRD analysis. SEM and XPS analyses were involved to characterize the morphology and chemical bonds of the catalysts. Results shown that the resulted catalyst carbonized at 800 °C (Fe-SC-800) was composed of Fe0 and Fe3O4, performing nano-flake-like structure. The Fe-SC-800 has the highest catalytic activity in degradation of AOII in C0 = 200 mg/L. The efficiency achieves at 98% within 30 min at neutral pH, which is ascribed to the hydroxyl radical oxidation. Moreover, no iron is leached and the Fe-SC-800 could be recycled for three times at least. Thus, the Fe rich sludge could be reutilized as a valuable source for eco-friendly catalyst production, constituting an ecological way to manage these sludge wastes and eliminate the sludge and organic pollution to environment.
Show more [+] Less [-]