Refine search
Results 791-800 of 4,309
Alteration in successional trajectories of bacterioplankton communities in response to co-exposure of cadmium and phenanthrene in coastal water microcosms Full text
2017
Qian, Jie | Ding, Qifang | Guo, Annan | Zhang, Demin | Wang, Kai
Coexistence of heavy metals and organic contaminants in coastal ecosystems may lead to complicated circumstances in ecotoxicological assessment for biological communities due to potential interactions of contaminants. Consequences of metals and polycyclic aromatic hydrocarbons (PAHs) co-contamination on coastal marine microbes at the community level were paid less attention. We chose cadmium (Cd) and phenanthrene (PHE) as representatives of metals and PAHs, respectively, and mimicked contaminations using coastal water microcosms spiked with Cd (1 mg/L), PHE (1 mg/L), and their mixture over two weeks. 16S rRNA gene amplicon sequencing was used to compare individual and cumulative effects of Cd and PHE on temporal succession of bacterioplankton communities. Although we found dramatic impacts of dimethylsulfoxide (DMSO, used as a carrier solvent for PHE) on bacterial α-diversity and composition, the individual and cumulative effects of Cd and PHE on bacterial α-diversity were temporally variable showing an antagonistic pattern at early stage in the presence of DMSO. Temporal succession of bacterial community composition (BCC) was associated with temporal variability of water physicochemical parameters, each of which explained more variation in BCC than two target contaminants did. However, Cd, PHE, and their mixture distinctly altered the successional trajectories of BCC, while only the effect of Cd was retained at the end of experiment, suggesting certain resilience in BCC after the complete dissipation of PHE along the temporal trajectory. Moreover, bacterial assemblages at the genus level associated with the target contaminants were highly time-dependent and more unpredictable in the co-contamination group, in which some genera possessing hydrocarbon-degrading members might contribute to PHE degradation. These results provide preliminary insights into how co-exposure of Cd and PHE phylogenetically alters successional trajectories of bacterioplankton communities in the manipulated coastal water microcosms.
Show more [+] Less [-]The effects of low-level ionizing radiation and copper exposure on the incidence of antibiotic resistance in lentic biofilm bacteria Full text
2017
McArthur, J Vaun | Dicks, Christian A. | Bryan, A Lawrence | Tuckfield, R Cary
Environmental reservoirs of antibiotic resistant bacteria are poorly understood. Understanding how the environment selects for resistance traits in the absence of antibiotics is critical in developing strategies to mitigate this growing menace. Indirect or co-selection of resistance by environmental pollution has been shown to increase antibiotic resistance. However no attention has been given to the effects of low-level ionizing radiation or the interactions between radiation and heavy metals on the maintenance or selection for antibiotic resistance (AR) traits. Here we explore the effect of radiation and copper on antibiotic resistance. Bacteria were collected from biofilms in two ponds – one impacted by low-level radiocesium and the other an abandoned farm pond. Through laboratory controlled experiments we examined the effects of increasing concentrations of copper on the incidence of antibiotic resistance. Differences were detected in the resistance profiles of the controls from each pond. Low levels (0.01 mM) of copper sulfate increased resistance but 0.5 mM concentrations of copper sulfate depressed the AR response in both ponds. A similar pattern was observed for levels of multiple antibiotic resistance per isolate. The first principal component response of isolate exposure to multiple antibiotics showed significant differences among the six isolate treatment combinations. These differences were clearly visualized through a discriminant function analysis, which showed distinct antibiotic resistance response patterns based on the six treatment groups.
Show more [+] Less [-]Identification of novel cytokine biomarkers of hexanal exposure associated with pulmonary toxicity Full text
2017
Cho, Yoon | Song, Mi-Kyung | Kim, Tae-sung | Ryu, Jae-Chun
We aimed to investigate whether exposure to low-molecular-weight saturated aliphatic aldehydes induces an airway inflammation related to lung toxicity. In previous studies, we identified that several aldehydes induced inflammatory responses through the secretion of pro-inflammatory cytokines.Here, we elucidate on whether hexanal exposure induces the lung inflammatory response through the secretion of cytokines. Hexanal is one of the aldehydes, which are major components of indoor environmental irritants. Based on a multiplexed cytokine antibody array, we investigated the cytokine expression profiles to identify the significant biomarkers of hexanal exposure and to predict the possibility of adverse effects on pulmonary toxicity using in vitro and in vivo model systems. We identified the cytokines as biomarkers involved in LEPTIN, Interleukin(IL)-10, MCP-1, and VEGF that showed similar expression patterns in both in vitro and in vivo models under hexanal exposure. These cytokines are known to be associated with diverse lung diseases, such as lung fibrosis, chronic obstructive pulmonary disease (COPD), and non-small cell lung cancer.Although further studies are needed to identify the mechanisms that underlie hexanal pulmonary toxicity, these results provide the key cytokine biomarkers in response to hexanal exposure and indicate meaningful mechanistic previewing that can be indirectly attributed to lung disease.
Show more [+] Less [-]Maternal exposure to air pollutants during the first trimester and foetal growth in Japanese term infants Full text
2017
Evidence supporting an inverse association between maternal exposure to air pollutants and foetal growth has been accumulating. However, the findings from Asian populations are limited, and the question of critical windows of exposure remains unanswered. We examined whether maternal exposure to air pollutants, in particular exposure during the first trimester (an important period of placental development), was associated with foetal growth in Japanese term infants. From the Japan Perinatal Registry Network database, we received birth data for 29,177 term singleton births in western Japan (Kyushu-Okinawa Districts) between 2005 and 2010. Exposure was expressed in terms of average concentrations of air pollutants (ozone, suspended particulate matter, nitrogen dioxide, and sulphur dioxide), as measured at the nearest monitoring stations to the respective delivery hospitals of the pregnant women, during the entire pregnancy and each trimester. As proxy markers of foetal growth restriction, we used small for gestational age (SGA), and adverse birth weight (low birth weight in addition to SGA). For pollutant exposure during the entire pregnancy, we did not observe the association with SGA and adverse birth weight. In the single-trimester model for the first trimester, however, we found a positive association between ozone exposure, and SGA (odds ratio [OR] per 10 ppb increase = 1.07, 95% confidence interval [CI] = 1.01–1.12) and adverse birth weight (OR = 1.07; 95% CI = 1.01–1.14). This association persisted in the multi-trimester model, and no association for exposure during the second or third trimester was observed. Exposure to other pollutants during each trimester was not associated with these outcomes. In conclusion, maternal exposure to ozone during the first trimester was independently associated with an elevated risk of poor foetal growth.
Show more [+] Less [-]Multiple mitigation mechanisms: Effects of submerged plants on the toxicity of nine insecticides to aquatic animals Full text
2017
Brogan, William R. | Relyea, Rick A.
Understanding the processes that regulate contaminant impacts in nature is an increasingly important challenge. For insecticides in surface waters, the ability of aquatic plants to sorb, or bind, hydrophobic compounds has been identified as a primary mechanism by which toxicity can be mitigated (i.e. the sorption-based model). However, recent research shows that submerged plants can also rapidly mitigate the toxicity of the less hydrophobic insecticide malathion via alkaline hydrolysis (i.e. the hydrolysis-based model) driven by increased water pH resulting from photosynthesis. However, it is still unknown how generalizable these mitigation mechanisms are across the wide variety of insecticides applied today, and whether any general rules can be ascertained about which types of chemicals may be mitigated by each mechanism. We quantified the degree to which the submerged plant Elodea canadensis mitigated acute (48-h) toxicity to Daphnia magna using nine commonly applied insecticides spanning three chemical classes (carbamates: aldicarb, carbaryl, carbofuran; organophosphates: malathion, diazinon, chlorpyrifos; pyrethroids: permethrin, bifenthrin, lambda-cyhalothrin). We found that insecticides possessing either high octanol-water partition coefficients (log Kow) values (i.e. pyrethroids) or high susceptibility to alkaline hydrolysis (i.e. carbamates and malathion) were all mitigated to some degree by E. canadensis, while the plant had no effect on insecticides possessing intermediate log Kow values and low susceptibility to hydrolysis (i.e. chlorpyrifos and diazinon). Our results provide the first general insights into which types of insecticides are likely to be mitigated by different mechanisms based on known chemical properties. We suggest that current models and mitigation strategies would be improved by the consideration of both mitigation models.
Show more [+] Less [-]A pilot study on health risk assessment based on body loadings of PCBs of lactating mothers at Taizhou, China, the world's major site for recycling transformers Full text
2017
Man, Yu Bon | Chow, Ka Lai | Xing, Guan Hua | Chan, Janet Kit Yan | Wu, Sheng Chun | Wong, Ming Hung
Our early study reported an extraordinarily high Estimated Daily Intake (EDI) of PCBs of lactating mothers from Taizhou, Zhejiang Province, China (based on a food consumption survey and food basket analysis). The EDI well exceeded the intake limit stipulated by FAO/WHO 70 pg TEQ/kg body weight (bw)/month. The present pilot study provided further information on PCBs body burden in lactating mothers of Taizhou. The total PCBs detected in human milk, placenta and hair samples of these lactating mothers were 363 ng/g lipid, 224 ng/g lipid, and 386 ng/g dry wt. Respectively, three times higher than those samples collected from the reference site (Lin'an). Compared with the previous reported values in the 3rd WHO coordinated study, Taizhou topped the list of 32 countries/regions with regards to WHO-PCB-TEQ values of milk samples, which could be attributed to the relatively higher level of PCB-126 derived from electronic waste. In addition, the corresponding EDI of PCBs of Taizhou mothers (12.9 pg WHO-PCB-TEQ/kg bw/day) and infants (438 pg WHO-PCB-TEQ/kg) were derived from individual congener levels in human milk. The results were also higher than the tolerable daily intakes recommended by WHO (1–4 pg WHO-TEQ/kg bw/day) by 3 and 110 times, for mothers and infants, respectively. A more intensive epidemiological study on the potential health effects of e-waste recycling activities affecting both workers and residents seems to be of top priority, based on findings of this pilot study.
Show more [+] Less [-]Glyphosate and AMPA, “pseudo-persistent” pollutants under real-world agricultural management practices in the Mesopotamic Pampas agroecosystem, Argentina Full text
2017
Primost, Jezabel E. | Marino, Damián J.G. | Aparicio, Virginia C. | Costa, José Luis | Carriquiriborde, Pedro
In the Pampas, public concern has strongly risen because of the intensive use of glyphosate for weed control and fallow associated with biotech crops. The present study was aimed to evaluate the occurrence and concentration of the herbicide and its main metabolite (AMPA) in soil and other environmental compartments of the mentioned agroecosystem, including groundwater, in relation to real-world agricultural management practices in the region. Occurrence was almost ubiquitous in solid matrices (83–100%) with maximum concentrations among the higher reported in the world (soil: 8105 and 38939; sediment: 3294 and 7219; suspended particulate matter (SPM): 584 and 475 μg/kg of glyphosate and AMPA). Lower detection frequency was observed in surface water (27–55%) with maximum concentrations in whole water of 1.80 and 1.90 μg/L of glyphosate and AMPA, indicating that SPM analysis would be more sensitive for detection in the aquatic ecosystem. No detectable concentrations of glyphosate or AMPA were observed in groundwater. Glyphosate soil concentrations were better correlated with the total cumulative dose and total number of applications than the last spraying event dose, and an increment of 1 mg glyphosate/kg soil every 5 spraying events was estimated. Findings allow to infer that, under current practices, application rates are higher than dissipation rates. Hence, glyphosate and AMPA should be considered “pseudo-persistent” pollutants and a revisions of management procedures, monitoring programs, and ecological risk for soil and sediments should be also recommended.
Show more [+] Less [-]Zinc oxide nanoparticle exposure triggers different gene expression patterns in maize shoots and roots Full text
2017
Xun, Hongwei | Ma, Xintong | Chen, Jing | Yang, Zhongzhou | Liu, Bao | Gao, Xiang | Li, Guo | Yu, Jiamiao | Wang, Li | Pang, Jinsong
The potential impacts of environmentally accumulated zinc oxide nanoparticles (nZnOs) on plant growth have not been well studied. A transcriptome profile analysis of maize exposed to nZnOs showed that the genes in the shoots and roots responded differently. Although the number of differentially expressed genes (DEGs) in the roots was greater than that in the shoots, the number of up- or down-regulated genes in both the shoots and roots was similar. The enrichment of gene ontology (GO) terms was also significantly different in the shoots and roots. The “nitrogen compound metabolism” and “cellular component” terms were specifically and highly up-regulated in the nZnO-exposed roots, whereas the categories “cellular metabolic process”, “primary metabolic process” and “secondary metabolic process” were down-regulated in the exposed roots only. Our results revealed the DEG response patterns in maize shoots and roots after nZnO exposure.
Show more [+] Less [-]Using new hetero-spectral two-dimensional correlation analyses and synchrotron-radiation-based spectromicroscopy to characterize binding of Cu to soil dissolved organic matter Full text
2017
Sun, Fusheng | Li, Yaqing | Wang, Xiang | Chi, Zhilai | Yu, Guanghui
Understanding the binding characteristics of copper (Cu) to different functional groups in soil dissolved organic matter (DOM) is important to explore Cu toxicity, bioavailability and ultimate fate in the environment. However, the methods used to explore such binding characteristics are still limited. Here, two-dimensional correlation spectroscopy (2DCOS) integrated with Fourier transform infrared (FTIR), 29Si nuclear magnetic resonance (NMR), 27Al NMR, and synchrotron-radiation-based FTIR spectromicroscopy were used to explore the binding characteristics of Cu to soil DOM as part of a long-term (23 years) fertilization experiment. Compared with no fertilization and inorganic fertilization (NPK), long-term pig manure fertilization (M) treatment significantly increased the concentration of total and bioavailable Cu in soils. Furthermore, hetero-spectral 2DCOS analyses demonstrated that the binding characteristics of Cu onto functional groups in soil DOM were modified by fertilization regimes. In the NPK treatment, Cu was bound to aliphatic C, whereas in the manure treatment SiO groups had higher affinity toward Cu than aliphatic C. Also, the sequence of binding of functional groups to Cu was modified by the fertilization treatments. Moreover, synchrotron-radiation-based FTIR spectromicroscopy showed that Cu, clay minerals and sesquioxides, and C functional groups were heterogeneously distributed at the micro-scale. Specifically, clay-OH as well as mineral elements had a distribution pattern similar to Cu, but certain (but not all) C forms showed a distribution pattern inconsistent with that of Cu. The combination of synchrotron radiation spectromicroscopy and 2DCOS is a useful tool in exploring the interactions among heavy metals, minerals and organic components in soils.
Show more [+] Less [-]To what extent are microplastics from the open ocean weathered? Full text
2017
ter Halle, Alexandra | Ladirat, Lucie | Martignac, Marion | Mingotaud, Anne-Françoise | Boyron, Olivier | Perez, Emile
It is necessary to better characterize plastic marine debris in order to understand its fate in the environment and interaction with organisms, the most common type of debris being made of polyethylene (PE) and polypropylene (PP). In this work, plastic debris was collected in the North Atlantic sub-tropical gyre during the Expedition 7th Continent sea campaign and consisted mainly in PE. While the mechanisms of PE photodegradation and biodegradation in controlled laboratory conditions are well known, plastic weathering in the environment is not well understood. This is a difficult task to examine because debris comes from a variety of manufactured objects, the original compositions and properties of which vary considerably. A statistical approach was therefore used to compare four sample sets: reference PE, manufactured objects, mesoplastics (5–20 mm) and microplastics (0.3–5 mm). Infrared spectroscopy showed that the surface of all debris presented a higher oxidation state than the reference samples. Differential scanning calorimetry analysis revealed that the microplastics were more crystalline contrarily to the mesoplastics which were similar to references samples. Size exclusion chromatography showed that the molar mass decreased from the references to meso- and microplastics, revealing a clear degradation of the polymer chains. It was thus concluded that the morphology of marine microplastic was much altered and that an unambiguous shortening of the polymer chains took place even for this supposedly robust and inert polymer.
Show more [+] Less [-]