Refine search
Results 81-90 of 754
Bioanalytical characterisation of multiple endocrine- and dioxin-like activities in sediments from reference and impacted small rivers Full text
2010
Kinani, Said | Bouchonnet, Stéphane | Creusot, Nicolas | Bourcier, Sophie | Balaguer, Patrick | Porcher, Jean-Marc | Aït-Aïssa, Sélim
A comprehensive evaluation of organic contamination was performed in sediments sampled in two reference and three impacted small streams where endocrine disruptive (ED) effects in fish have been evidenced. The approach combined quantitative chemical analyses of more than 50 ED chemicals (EDCs) and a battery of in vitro bioassays allowing the quantification of receptor-mediated activities, namely estrogen (ER), androgen (AR), dioxin (AhR) and pregnane X (PXR) receptors. At the most impacted sites, chemical analyses showed the presence of natural estrogens, organochlorine pesticides, parabens, polycyclic aromatic hydrocarbons (16 PAHs), bisphenol A and alkylphenols, while synthetic steroids, myco-estrogens and phyto-estrogens were not detected. Determination of toxic-equivalent amounts showed that 28–96% of estrogenic activities in bioassays (0.2–6.3 ng/g 17β-estradiol equivalents) were explained by 17β-estradiol and estrone. PAHs were major contributors (20–60%) to the total dioxin-like activities. Interestingly, high PXR and (anti)AR activities were detected; however, the targeted analysed compounds could not explain the measured biological activities. This study highlighted the presence of multiple organic EDCs in French river sediments subjected to mixed diffuse pollution, and argues for the need to further identify AR and PXR active compounds in the aquatic environment. Multiple endocrine disrupting chemicals (ER, AR, AhR and PXR ligands) are detected in French river sediments using a panel of in vitro bioassays and analytical methods.
Show more [+] Less [-]Sensitivity of agricultural runoff loads to rising levels of CO2 and climate change in the San Joaquin Valley watershed of California Full text
2010
Ficklin, Darren L. | Luo, Yuzhou | Luedeling, Eike | Gatzke, Sarah E. | Zhang, Minghua
The Soil and Water Assessment Tool (SWAT) was used to assess the impact of climate change on sediment, nitrate, phosphorus and pesticide (diazinon and chlorpyrifos) runoff in the San Joaquin watershed in California. This study used modeling techniques that include variations of CO2, temperature, and precipitation to quantify these responses. Precipitation had a greater impact on agricultural runoff compared to changes in either CO2 concentration or temperature. Increase of precipitation by ±10% and ±20% generally changed agricultural runoff proportionally. Solely increasing CO2 concentration resulted in an increase in nitrate, phosphorus, and chlorpyrifos yield by 4.2, 7.8, and 6.4%, respectively, and a decrease in sediment and diazinon yield by 6.3 and 5.3%, respectively, in comparison to the present-day reference scenario. Only increasing temperature reduced yields of all agricultural runoff components. The results suggest that agricultural runoff in the San Joaquin watershed is sensitive to precipitation, temperature, and CO2 concentration changes. Agricultural runoff is significantly affected by changes in precipitation, temperature, and atmospheric CO2 concentration.
Show more [+] Less [-]Elevated CO2 response of photosynthesis depends on ozone concentration in aspen Full text
2010
Noormets, Asko | Kull, Olevi | Sôber, Anu | Kubiske, Mark E. | Karnosky, David F.
The effect of elevated CO2 and O3 on apparent quantum yield (), maximum photosynthesis (Pmax), carboxylation efficiency (Vcmax) and electron transport capacity (Jmax) at different canopy locations was studied in two aspen (Populus tremuloides) clones of contrasting O3 tolerance. Local light climate at every leaf was characterized as fraction of above-canopy photosynthetic photon flux density (ÆPPFD). Elevated CO2 alone did not affect or Pmax, and increased Jmax in the O3-sensitive, but not in the O3-tolerant clone. Elevated O3 decreased leaf chlorophyll content and all photosynthetic parameters, particularly in the lower canopy, and the negative impact of O3 increased through time. Significant interaction effect, whereby the negative impact of elevated O3 was exaggerated by elevated CO2 was seen in Chl, N and Jmax, and occurred in both O3-tolerant and O3-sensitive clones. The clonal differences in the level of CO2 × O3 interaction suggest a relationship between photosynthetic acclimation and background O3 concentration. Photosynthetic acclimation to elevated CO2 depends on the background oxidant levels.
Show more [+] Less [-]Effects of amendments on the uptake and distribution of DDT in Cucurbita pepo ssp pepo plants Full text
2010
Åslund, Melissa L Whitfield | Lunney, Alissa I. | Rutter, Allison | Zeeb, Barbara A.
The effects of soil amendments on the phytoextraction of ∑DDT (DDT + DDD + DDE) from soil ([∑DDT] not, vert, similar 1500 ng/g) by a pumpkin variety of Cucurbita pepo ssp pepo were tested and the patterns of ∑DDT storage throughout the plant shoot were examined. The soil amendments did not increase the total amount of ∑DDT extracted into plant shoots, but new information about ∑DDT distribution in the plants was obtained. As observed previously, the ∑DDT concentration in plant leaves (mean 290 ng/g) was significantly lower than in plant stems (mean 2600 ng/g). Further analysis revealed that ∑DDT composition was consistent throughout the plant shoot and that ∑DDT concentration in leaves and stems decreased exponentially as distance from the root increased, which was previously unknown. This new information about the patterns of ∑DDT uptake and translocation within pumpkin plants highlights the need for appropriate plant sampling strategies in future POPs phytoextraction research. Patterns of ∑DDT storage in a pumpkin plant are elucidated and specific surfactant and mycorrhizal soil amendments did not increase the total amount of ∑DDT phytoextracted into plant shoots.
Show more [+] Less [-]Copper mobilization affected by weather conditions in a stormwater detention system receiving runoff waters from vineyard soils (Champagne, France) Full text
2010
Banas, D. | Marin, B. | Skraber, S. | Chopin, E.I.B. | Zanella, A.
Copper, a priority substance on the EU-Water Framework Directive list, is widely used to protect grapevines against fungus diseases. Many vineyards being located on steep slopes, large amounts of Cu could be discharged in downstream systems by runoff water. The efficiency of stormwater detention basins to retain copper in a vineyard catchment was estimated. Suspended solids, dissolved (Cudiss) and total Cu (Cutot) concentrations were monitored in runoff water, upstream, into and downstream from a detention pond. Mean Cutot concentrations in entering water was 53.6 μg/L whereas it never exceeded 2.4 μg/L in seepage. Cutot concentrations in basin water (>100 μg/L in 24% of the samples) exceeded LC50 values for several aquatic animals. Copper was principally sequestered by reduced compounds in the basin sediments (2/3 of Cutot). Metal sequestration was reversible since sediment resuspension resulted in Cu remobilization. Wind velocity controlled resuspension, explained 70% of Cudiss variability and could help predicting Cu mobilization. Copper in stormwater basin is efficiently retained but can be released during windy events or after dredging.
Show more [+] Less [-]Estimating contribution of wildland fires to ambient ozone levels in National Parks in the Sierra Nevada, California Full text
2010
Preisler, Haiganoush K. | Chung, S. Y (Sze Yuen) | Esperanza, Annie | Brown, Timothy J. | Bytnerowicz, Andrzej | Tarnay, Leland
monitoring sites operated by the National Park Service in Sierra Nevada, California, are used to develop an ozone forecasting model and to estimate the contribution of wildland fires on ambient ozone levels. The analyses of weather and ozone data pointed to the transport of ozone precursors from the Central Valley as an important source of pollution in these National Parks. Comparisons of forecasted and observed values demonstrated that accurate forecasts of next-day hourly ozone levels may be achieved by using a time series model with historic averages, expected local weather and modeled PM values as explanatory variables. Results on fire smoke influence indicated occurrence of significant increases in average ozone levels with increasing fire activity. The overall effect on diurnal ozone values, however, was small when compared with the amount of variability attributed to sources other than fire. We have demonstrated that it is possible to produce accurate forecasts of next-day hourly ozone levels in the Sierra Nevada, CA, during fire season.
Show more [+] Less [-]Uptake of Cd(II) and Pb(II) by microalgae in presence of colloidal organic matter from wastewater treatment plant effluents Full text
2010
Worms, Isabelle A.M. | Traber, Jacqueline | Kistler, David | Sigg, Laura | Slaveykova, Vera I.
The present study addresses the key issue of linking the chemical speciation to the uptake of priority pollutants Cd(II) and Pb(II) in the wastewater treatment plant effluents, with emphasis on the role of the colloidal organic matter (EfOM). Binding of Cd(II) and Pb(II) by EfOM was examined by an ion exchange technique and flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry in parallel to bioassays with green microalga Chlorella kesslerii in ultrafiltrate (<1 kDa) and colloidal isolates (1 kDa to 0.45 μm). The uptake of Cd by C. kesslerii was consistent with the speciation analysis and measured free metal ion concentrations, while Pb uptake was much greater than that expected from the speciation measurement. Better understanding of the differences in the effects of the EfOM on Cd(II) and Pb(II) uptake required to take into account the size dependence of metal binding by EfOM. Colloids isolated from WWTP effluents decrease Cd uptake, but increase Pb uptake by microalga Chlorella kesslerii.
Show more [+] Less [-]Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide Full text
2010
Li, F.B. | Li, X.M. | Zhou, S.G. | Zhuang, L. | Cao, F. | Huang, D.Y. | Xu, W. | Liu, T.X. | Feng, C.H.
The transformation of DDT was studied in an anaerobic system of dissimilatory iron-reducing bacteria (Shewanella decolorationis S12) and iron oxide (α-FeOOH). The results showed that S. decolorationis could reduce DDT into DDD, and DDT transformation rate was accelerated by the presence of α-FeOOH. DDD was observed as the primary transformation product, which was demonstrated to be transformed in the abiotic system of Fe2+ + α-FeOOH and the system of DIRB + α-FeOOH. The intermediates of DDMS and DBP were detected after 9 months, likely suggesting that reductive dechlorination was the main dechlorination pathway of DDT in the iron-reducing system. The enhanced reductive dechlorination of DDT was mainly due to biogenic Fe(II) sorbed on the surface of α-FeOOH, which can serve as a mediator for the transformation of DDT. This study demonstrated the important role of DIRB and iron oxide on DDT and DDD transformation under anaerobic iron-reducing environments.
Show more [+] Less [-]Lead deposited in the cell wall of Funaria hygrometrica protonemata is not stable – A remobilization can occur Full text
2010
Krzesłowska, Magdalena | Lenartowska, Marta | Samardakiewicz, Sławomir | Bilski, Henryk | Woźny, Adam
The hypothesis that lead (Pb) can be uptake or remobilized from the cell wall (CW) by internalization withlow-esterified pectins (up to 40% – JIM5-P), was studied in tip-growing apical cell of Funaria hygrometrica protonemata. Treatment 4 h with 1 mM PbCl2 caused marked vesicular traffic intensification and the common internalization of JIM5-P from the CW. Lead bound to JIM5-P was internalized from the CW, together with this compound and entered the protoplast. It showed that Pb deposited in CW is not as safe for plant cell as previously believed. However, pulse-chase experiments (recovering 4 h and 24 h) indicated that CW and its thickenings can function as the final sequestration compartments. In Pb deposition sites, a callose layer occurred. It was localized from the protoplast site, next to Pb deposits separating sequestrated to CW and its thickenings Pb from plasma membrane almost certainly protecting the plant cell from its returning into the protoplast. Lead bound to low-esterified pectins in cell wall can be uptake or remobilized by endocytosis together with this pectin epitope.
Show more [+] Less [-]Dynamics of mercury fluxes and their controlling factors in large Hg-polluted floodplain areas Full text
2010
Rinklebe, Jörg | During, Anja | Overesch, Mark | Du Laing, Gijs | Wennrich, Rainer | Stärk, Hans-Joachim | Mothes, Sibylle
Environmental pollution by mercury (Hg) is a considerable environmental problem world-wide. Due to the occurrence of Hg volatilization from their soils, floodplains can function as an important source of volatile Hg. Soil temperature and soil water content related to flood dynamics are considered as important factors affecting seasonal dynamics of total gaseous mercury (TGM) fluxes. We quantified seasonal variations of TGM fluxes and conducted a laboratory microcosm experiment to assess the effect of temperature and moisture on TGM fluxes in heavily polluted floodplain soils. Observed TGM emissions ranged from 10 to 850 ng m−2 h−1 and extremely exceeded the emissions of non-polluted sites. TGM emissions increased exponentially with raised air and soil temperatures in both field (R2: 0.49–0.70) and laboratory (R2: 0.99) experiments. Wet soil material showed higher TGM fluxes, whereas the role of soil water content was affected by sampling time during the microcosm experiments. Warmer environmental conditions result in higher Hg volatilization rates from floodplain soils.
Show more [+] Less [-]