Refine search
Results 81-90 of 3,208
Alkylphenols and Phthalates in Greywater from Showers and Washing Machines Full text
2015
Deshayes, Steven | Eudes, Véronique | Droguet, Christine | Bigourie, Magali | Gasperi, Johnny | Moilleron, Régis | Laboratoire Eau Environnement et Systèmes Urbains (LEESU) ; AgroParisTech-École nationale des ponts et chaussées (ENPC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12) | Laboratoire Central de la Préfecture de Police (LCPP) ; Préfecture de police | Thèse en collaboration entre le LCPP et OPUR
Alkylphenols and Phthalates in Greywater from Showers and Washing Machines Full text
2015
Deshayes, Steven | Eudes, Véronique | Droguet, Christine | Bigourie, Magali | Gasperi, Johnny | Moilleron, Régis | Laboratoire Eau Environnement et Systèmes Urbains (LEESU) ; AgroParisTech-École nationale des ponts et chaussées (ENPC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12) | Laboratoire Central de la Préfecture de Police (LCPP) ; Préfecture de police | Thèse en collaboration entre le LCPP et OPUR
International audience | Paris conurbation is a heavily urbanized but weakly industrialized catchment. Recently, it has been shown at the scale of Paris that alkylphenols (AP) and phthalates (PAE) are not rejected by the industry, but they originate from domestic wastewater at more than 95 %. However, the contribution of the different types of greywater to the pollution by alkylphenols and phthalates was not addressed. This work aims at providing new insights on this particular point. Hence, the concentration of four phthalates (diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), benzyl butyl phthalate (BBP), and di(2-ethylhexyl)phthalate (DEHP)) and two alkylphenols (octylphenols (OP) and isomers of nonylphenol (NP)) were followed in greywater. For each sample, analyses were carried out on both the dissolved and particulate phases. Moreover, water quality parameters were also monitored, in order to find out whether or not any correlation exists between the concentration of the investigated contaminants and the quality of water. Water quality parameters studied are pH, total suspended solids (TSS), dissolved and particular organic carbon (DOC and POC), chemical and biochemical oxygen demands (COD and BOD5), total Kjeldahl nitrogen (TKN), and anionic detergents (methylene blue active substance or MBAS). This paper presents the methodology used to monitor two greywater with the most important volumes: showers and washing machines. These greywater showed high variability with regard to water quality parameters. Moreover, AP and PAE concentrations are given for the first time for these two types of greywater. All compounds except OP were observed in almost all samples in at least one of the two monitored phases. The concentrations varied between limit of quantification for OP and 102 μg/l for DEHP. The levels measured in washing machines were higher than those for showers for all compounds. For instance, median NP concentration in washing machines was 3.59 μg/l against 1.09 μg/l in showers, DEHP was observed at 102 μg/l in washing machines against 16.6 μg/l in showers. Variability of the results was explained by habits of individuals (shower time, number of products used…) but also by differences in product composition. However, each type of water exhibited the same distribution. NP was the most abundant AP (about 85 % of the total amount) while DEHP represented the two thirds of the PAE compounds. The partition coefficients (Kd in l/kg) were evaluated. The results showed that log Kd ranged between 2.1 (DEP) and 4.8 (DEHP). Log Koc presented similar trends lying in the 2.4 (DEP)-5.0 (DEHP) range. Finally, with regard to greywater quality, the application for greywater reuse is discussed.
Show more [+] Less [-]Alkylphenols and Phthalates in Greywater from Showers and Washing Machines Full text
2015
Deshayes, Steven | Eudes, Véronique | Droguet, Christine | Bigourie, Magali | Gasperi, Johnny | Moilleron, Régis
Paris conurbation is a heavily urbanized but weakly industrialized catchment. Recently, it has been shown at the scale of Paris that alkylphenols (AP) and phthalates (PAE) are not rejected by the industry, but they originate from domestic wastewater at more than 95 %. However, the contribution of the different types of greywater to the pollution by alkylphenols and phthalates was not addressed. This work aims at providing new insights on this particular point. Hence, the concentration of four phthalates (diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), benzyl butyl phthalate (BBP), and di(2-ethylhexyl)phthalate (DEHP)) and two alkylphenols (octylphenols (OP) and isomers of nonylphenol (NP)) were followed in greywater. For each sample, analyses were carried out on both the dissolved and particulate phases. Moreover, water quality parameters were also monitored, in order to find out whether or not any correlation exists between the concentration of the investigated contaminants and the quality of water. Water quality parameters studied are pH, total suspended solids (TSS), dissolved and particular organic carbon (DOC and POC), chemical and biochemical oxygen demands (COD and BOD5), total Kjeldahl nitrogen (TKN), and anionic detergents (methylene blue active substance or MBAS). This paper presents the methodology used to monitor two greywater with the most important volumes: showers and washing machines. These greywater showed high variability with regard to water quality parameters. Moreover, AP and PAE concentrations are given for the first time for these two types of greywater. All compounds except OP were observed in almost all samples in at least one of the two monitored phases. The concentrations varied between limit of quantification for OP and 102 μg/l for DEHP. The levels measured in washing machines were higher than those for showers for all compounds. For instance, median NP concentration in washing machines was 3.59 μg/l against 1.09 μg/l in showers, DEHP was observed at 102 μg/l in washing machines against 16.6 μg/l in showers. Variability of the results was explained by habits of individuals (shower time, number of products used…) but also by differences in product composition. However, each type of water exhibited the same distribution. NP was the most abundant AP (about 85 % of the total amount) while DEHP represented the two thirds of the PAE compounds. The partition coefficients (Kd in l/kg) were evaluated. The results showed that log Kd ranged between 2.1 (DEP) and 4.8 (DEHP). Log Koc presented similar trends lying in the 2.4 (DEP)-5.0 (DEHP) range. Finally, with regard to greywater quality, the application for greywater reuse is discussed.
Show more [+] Less [-]Influence of the natural growth environment on the sensitivity of phototrophic biofilm to herbicide | Influence du milieu naturel d'origine sur la sensibilité du biofilm phototrophe à un herbicide Full text
2015
Paule, Armelle | Lamy, A. | Roubeix, V. | Delmas, François | Rols, J.L. | Centre National de la Recherche Scientifique (CNRS) | Ecosystèmes aquatiques et changements globaux (UR EABX) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
Influence of the natural growth environment on the sensitivity of phototrophic biofilm to herbicide | Influence du milieu naturel d'origine sur la sensibilité du biofilm phototrophe à un herbicide Full text
2015
Paule, Armelle | Lamy, A. | Roubeix, V. | Delmas, François | Rols, J.L. | Centre National de la Recherche Scientifique (CNRS) | Ecosystèmes aquatiques et changements globaux (UR EABX) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
[Departement_IRSTEA]Eaux [TR1_IRSTEA]BELCA | International audience | Ecotoxicological experiments were performed in laboratory-scale microcosms to investigate community-level responses of river phototrophic biofilms from different environments to herbicide exposure. Biofilms were initially cultivated on artificial substrates placed in situ for 4 weeks at two sites, site M, located in an agricultural watershed basin and site S, located in a forested watershed basin. The biofilms were subsequently transferred to microcosms and, after an acclimatization phase of 7 days, were exposed to alachlor at 10 and 30 µg L-1 for 23 days. Alachlor effects were assessed by a combination of structural parameters, including biomass (ash free dry mass and chlorophyll a), molecular fingerprinting of the bacterial community (polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) and diatom species composition. Alachlor impacted the chlorophyll a and ash-free dry mass levels of phototrophic biofilms previously cultivated at site S. The structural responses of bacterial and diatom communities and diatom were difficult to distinguish from changes linked to the microcosm incubation period. Phototrophic biofilms from site S exposed at 30 µg L-1 alachlor were characterised by an increase of Achnanthidium minutissimum (K-z.) Czarnecki abundance, as well as a higher proportion of abnormal frustules. Thus, phototrophic biofilms with different histories, exhibited different responses to alachlor exposure demonstrating the importance of growth environment. These observations also confirm the problem of distinguishing changes induced by the stress of pesticide toxicity from temporal evolution of the community in the microcosm.
Show more [+] Less [-]Influence of the natural growth environment on the sensitivity of phototrophic biofilm to herbicide Full text
2015
Paule, A. | Lamy, A. | Roubeix, V. | Delmas, F. | Rols, J. L.
Ecotoxicological experiments were performed in laboratory-scale microcosms to investigate community-level structural responses of river phototrophic biofilms from different environments to herbicide exposure. Biofilms were initially cultivated on artificial supports placed in situ for 4 weeks at two sites, site M, located in an agricultural watershed basin and site S, located in a forested watershed basin. The biofilms were subsequently transferred to microcosms and, after an acclimatisation phase of 7 days were exposed to alachlor at 10 and 30 μg L⁻¹ for 23 days. Alachlor effects were assessed by a combination of structural parameters, including biomass (ash-free dry mass and chlorophyll a), molecular fingerprinting of the bacterial community (polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE)) and diatom species composition. Alachlor impacted the chlorophyll a and ash-free dry mass levels of phototrophic biofilms previously cultivated at site S. The structural responses of bacterial and diatom communities were difficult to distinguish from changes linked to the microcosm incubation period. Phototrophic biofilms from site S exposed at 30 μg L⁻¹ alachlor were characterised by an increase of Achnanthidium minutissimum (K-z.) Czarnecki abundance, as well as a higher proportion of abnormal frustules. Thus, phototrophic biofilms with different histories, exhibited different responses to alachlor exposure demonstrating the importance of growth environment. These observations also confirm the problem of distinguishing changes induced by the stress of pesticide toxicity from temporal evolution of the community in the microcosm.
Show more [+] Less [-]On the occurrence of a widespread contamination by herbicides of coral reef biota in French Polynesia Full text
2015
Salvat, Bernard | Roche, Hélène | Ramade, François | Laboratoire d'Excellence CORAIL (LabEX CORAIL) ; Institut de Recherche pour le Développement (IRD)-Université des Antilles et de la Guyane (UAG)-École des hautes études en sciences sociales (EHESS)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de La Réunion (UR)-Université de la Polynésie Française (UPF)-Université de la Nouvelle-Calédonie (UNC)-Institut d'écologie et environnement-Université des Antilles (UA) | Centre de recherches insulaires et observatoire de l'environnement (CRIOBE) ; Université de Perpignan Via Domitia (UPVD)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS) | Ecologie Systématique et Evolution (ESE) ; Université Paris-Sud - Paris 11 (UP11)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS)
International audience | Research has been conducted within the framework of the French Initiative for Coral Reefs (IFRECOR) to assess pesticide pollution levels in the coral reef trophic webs in French Polynesia. Unexpected widespread contamination by herbicides was found in algae, fishes and macro-invertebrates located at various levels of the reef trophic web. Concentrations in organisms investigated were for the majority below the lowest observable effect level and do not pose a dietary risk to native population who subsist on these fish. However, the widespread contamination may affect the reef ecosystem in the future as coral symbiotic algae, Symbidinium sp. (Dinophyta) are particularly sensitive to photosystem II herbicides, particularly the substituted urea and triazine derivatives.
Show more [+] Less [-]Estimates of pesticide concentrations and fluxes in two rivers of an extensive French multi-agricultural watershed: application of the passive sampling strategy Full text
2015
Poulier, Gaëlle | Lissalde, Sophie | Charriau, Adeline | Buzier, Rémy | Cleries, Karine | Delmas, François | Mazzella, Nicolas | Guibaud, Gilles | Groupement de Recherche Eau, Sol, Environnement (GRESE) ; Université de Limoges (UNILIM) | Ecosystèmes aquatiques et changements globaux (UR EABX) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
Estimates of pesticide concentrations and fluxes in two rivers of an extensive French multi-agricultural watershed: application of the passive sampling strategy Full text
2015
Poulier, Gaëlle | Lissalde, Sophie | Charriau, Adeline | Buzier, Rémy | Cleries, Karine | Delmas, François | Mazzella, Nicolas | Guibaud, Gilles | Groupement de Recherche Eau, Sol, Environnement (GRESE) ; Université de Limoges (UNILIM) | Ecosystèmes aquatiques et changements globaux (UR EABX) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
[Departement_IRSTEA]Eaux [TR1_IRSTEA]BELCA | International audience | In this study, the passive sampling strategy was evaluated for its ability to improve water quality monitoring in terms of concentrations and frequencies of quantification of pesticides, with a focus on flux calculation. Polar Organic Chemical Integrative Samplers (POCIS) were successively exposed and renewed at three sampling sites of an extensive French multi-agricultural watershed from January to September 2012. Grab water samples were recovered every 14 days during the same period and an automated sampler collected composite water samples from April to July 2012. 39 compounds (pesticides and metabolites) were analysed. Desethylatrazine, diuron and atrazine (banned in France for many years) likely arrived via groundwater whereas dimethanamid, imidacloprid and acetochlor (all still in use) were probably transported via leaching. The comparison of the three sampling strategies showed that the POCIS offers lower detection limits, resulting in the quantification of trace levels of compounds (acetochlor, diuron and desethylatrazine) that could not be measured in grab and composite water samples. As a consequence, the frequencies of occurrence were dramatically enhanced with the POCIS compared to spot sample data. Moreover, the integration of flood events led to a better temporal representation of the fluxes when calculated with the POCIS compared to the bimonthly grab sampling strategy. We concluded that the POCIS could be an advantageous alternative to spot sampling, offering better performance in terms of quantification limits, and more representative data.
Show more [+] Less [-]Estimates of pesticide concentrations and fluxes in two rivers of an extensive French multi-agricultural watershed: application of the passive sampling strategy Full text
2015
Poulier, Gaëlle | Lissalde, Sophie | Charriau, Adeline | Buzier, Rémy | Cleries, Karine | Delmas, François | Mazzella, Nicolas | Guibaud, Gilles
In this study, the passive sampling strategy was evaluated for its ability to improve water quality monitoring in terms of concentrations and frequencies of quantification of pesticides, with a focus on flux calculation. Polar Organic Chemical Integrative Samplers (POCIS) were successively exposed and renewed at three sampling sites of an extensive French multi-agricultural watershed from January to September 2012. Grab water samples were recovered every 14 days during the same period and an automated sampler collected composite water samples from April to July 2012. Thirty-nine compounds (pesticides and metabolites) were analysed. DEA, diuron and atrazine (banned in France for many years) likely arrived via groundwater whereas dimethanamid, imidacloprid and acetochlor (all still in use) were probably transported via leaching. The comparison of the three sampling strategies showed that the POCIS offers lower detection limits, resulting in the quantification of trace levels of compounds (acetochlor, diuron and desethylatrazine (DEA)) that could not be measured in grab and composite water samples. As a consequence, the frequencies of occurrence were dramatically enhanced with the POCIS compared to spot sample data. Moreover, the integration of flood events led to a better temporal representation of the fluxes when calculated with the POCIS compared to the bimonthly grab sampling strategy. We conclude that the POCIS could be an advantageous alternative to spot sampling, offering better performance in terms of quantification limits and more representative data.
Show more [+] Less [-]Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites Full text
2015
Simon-Delso, N | Amaral-Rogers, V. | Belzunces, Luc | Bonmatin, J-M. | Chagnon, M. | Downs, C. | Furlan, L. | Gibbons, D.W. | Giorio, C. | Girolami, V. | Goulson, D. | Kreutzweiser, D.P. | Krupke, C. | Liess, M. | Long, E. | Mcfield, M. | Mineau, P. | Mitchell, E.A.D. | Morrissey, C.A. | Noome, D.A. | Pisa, L | Settele, J. | Stark, J. D. | Tapparo, A. | van Dyck, H. | van Praagh, J.P. | van Der Sluijs, J. P. | Whitehorn, P.R. | Wiemers, M. | Universiteit Utrecht / Utrecht University [Utrecht] | Centre Apicole de Recherche et Information ; Partenaires INRAE | Buglife | Abeilles et environnement (AE) ; Institut National de la Recherche Agronomique (INRA) | Centre de biophysique moléculaire (CBM) ; Université d'Orléans (UO)-Université de Tours (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | Département des Sciences Biologiques ; Université du Québec à Montréal = University of Québec in Montréal (UQAM) | Haereticus Environmental Laboratory ; Partenaires INRAE | Veneto Agricoltura | Centre for Conservation Science | Department of Chemistry ; University of Cambridge [UK] (CAM) | Università degli Studi di Padova = University of Padua (Unipd) | School of Life Sciences ; University of Sussex | Canadian Forest Service ; Natural Resources Canada (NRCan) | Department of Entomology ; Michigan State University [East Lansing] ; Michigan State University System-Michigan State University System | Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ) | Smithsonian Institution | Pierre Mineau Consulting ; Partenaires INRAE | Laboratory of Soil Biology ; Université de Neuchâtel = University of Neuchatel (UNINE) | Jardin Botanique de Neuchâtel | University of Saskatchewan [Saskatoon, Canada] (U of S) | Kijani ; Partenaires INRAE | Department of Community Ecology ; Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ) | German Centre for Integrative Biodiversity Research (iDiv) | Washington State University (WSU) | Université Catholique de Louvain = Catholic University of Louvain (UCL) | Scientific Advisor ; Partenaires INRAE | University of Bergen (UiB) | School of Natural Sciences ; University of Stirling
Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites Full text
2015
Simon-Delso, N | Amaral-Rogers, V. | Belzunces, Luc | Bonmatin, J-M. | Chagnon, M. | Downs, C. | Furlan, L. | Gibbons, D.W. | Giorio, C. | Girolami, V. | Goulson, D. | Kreutzweiser, D.P. | Krupke, C. | Liess, M. | Long, E. | Mcfield, M. | Mineau, P. | Mitchell, E.A.D. | Morrissey, C.A. | Noome, D.A. | Pisa, L | Settele, J. | Stark, J. D. | Tapparo, A. | van Dyck, H. | van Praagh, J.P. | van Der Sluijs, J. P. | Whitehorn, P.R. | Wiemers, M. | Universiteit Utrecht / Utrecht University [Utrecht] | Centre Apicole de Recherche et Information ; Partenaires INRAE | Buglife | Abeilles et environnement (AE) ; Institut National de la Recherche Agronomique (INRA) | Centre de biophysique moléculaire (CBM) ; Université d'Orléans (UO)-Université de Tours (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | Département des Sciences Biologiques ; Université du Québec à Montréal = University of Québec in Montréal (UQAM) | Haereticus Environmental Laboratory ; Partenaires INRAE | Veneto Agricoltura | Centre for Conservation Science | Department of Chemistry ; University of Cambridge [UK] (CAM) | Università degli Studi di Padova = University of Padua (Unipd) | School of Life Sciences ; University of Sussex | Canadian Forest Service ; Natural Resources Canada (NRCan) | Department of Entomology ; Michigan State University [East Lansing] ; Michigan State University System-Michigan State University System | Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ) | Smithsonian Institution | Pierre Mineau Consulting ; Partenaires INRAE | Laboratory of Soil Biology ; Université de Neuchâtel = University of Neuchatel (UNINE) | Jardin Botanique de Neuchâtel | University of Saskatchewan [Saskatoon, Canada] (U of S) | Kijani ; Partenaires INRAE | Department of Community Ecology ; Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ) | German Centre for Integrative Biodiversity Research (iDiv) | Washington State University (WSU) | Université Catholique de Louvain = Catholic University of Louvain (UCL) | Scientific Advisor ; Partenaires INRAE | University of Bergen (UiB) | School of Natural Sciences ; University of Stirling
International audience | Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits), veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000 tonnes active substance in 2010. There were several reasons for the initial success of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time—depending on the plant, its growth stage, and the amount of pesticide applied. Awide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neurons leading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts.
Show more [+] Less [-]Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites Full text
2015
Simon-Delso, N. | Amaral-Rogers, V. | Belzunces, L. P. | Bonmatin, J. M. | Chagnon, M. | Downs, C. | Furlan, L. | Gibbons, D. W. | Giorio, C. | Girolami, V. | Goulson, D. | Kreutzweiser, D. P. | Krupke, C. H. | Liess, M. | Long, E. | McField, M. | Mineau, P. | Mitchell, E. A. D. | Morrissey, C. A. | Noome, D. A. | Pisa, L. | Settele, J. | Stark, J. D. | Tapparo, A. | Van Dyck, H. | Praagh, Jaap van | Van der Sluijs, J. P. | Whitehorn, P. R. | Wiemers, M.
Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits), veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000 tonnes active substance in 2010. There were several reasons for the initial success of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time—depending on the plant, its growth stage, and the amount of pesticide applied. A wide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neurons leading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts.
Show more [+] Less [-]Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites Full text
2015
Amaral-Rogers, V. | Belzunces, Luc | Bonmatin, J-M. | Chagnon, M. | Downs, C. | Furlan, L. | Gibbons, D.W. | Giorio, C. | Girolami, V. | Goulson, D. | Kreutzweiser, D.P. | Krupke, C. | Liess, M. | Long, E. | McField, M. | Mineau, P. | Mitchell, E.A.D. | Morrissey, C.A. | Noome, D.A. | Pisa, L | Settele, J. | Stark, J. D. | Tapparo, A. | Van Dyck, H. | van Praagh, J.P. | Van der Sluijs, J. P. | Whitehorn, P.R. | Wiemers, M.
Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits),veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000 tonnes active substance in 2010. There were several reasons for the initialsuccess of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time—depending on the plant, its growth stage, and the amount of pesticide applied. Awide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neuronsleading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts.
Show more [+] Less [-]Hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry for acidic herbicides and metabolites analysis in fresh water Full text
2015
Fauvelle, V. | Mazzella, Nicolas | Morin, Soizic | Moreira, Sylvia | Delest, B. | Budzinski, H. | Ecosystèmes aquatiques et changements globaux (UR EABX) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Environnements et Paléoenvironnements OCéaniques (EPOC) ; École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
[Departement_IRSTEA]Eaux [TR1_IRSTEA]BELCA | International audience | Theoretical papers and environmental applications of hydrophilic interaction liquid chromatography (HILIC) have been published for a wide range of analytes, but to our knowledge, no study focused on acidic herbicides (e.g., triketones, phenoxy acids, sulfonylurea, and acidic metabolites of chloroacetanilides). Matrix effects are the main obstacle to natural sample analysis by liquid chromatography coupled with tandem mass spectrometry (MS) via an electrospray ionization (ESI) interface. Therefore, we paid particular attention on limiting interference by (i) adapting the emerging HILIC technique, which is generally considered more sensitive than conventional reversed phase liquid chromatography and (ii) optimizing the solid phase extraction (SPE) step using a design of experiment. A rapid and reliable off line SPE-HILIC-ESI-MS/MS method was thus developed for the quantification of acidic herbicides in fresh water, with limits of quantifications (LOQs) ranging from 5 to 22 ng l1 . Then, the analysis of freshwater samples highlighted the robustness of the method, and the importance of the chloroacetanilides metabolites among the studied analytes.
Show more [+] Less [-]Development and applications of a DNA labeling method with magnetic nanoparticles to study the role of horizontal gene transfer events between bacteria in soil pollutant bioremediation processes Full text
2015
Pivetal, Jérémy | Frénéa-Robin, Marie | Haddour, Naoufel | Vézy, C. | Zanini, L.-F. | Ciuta, Georgeta | Dempsey, Nora | Dumas-Bouchiat, Frédéric | Reyne, Gilbert | Bégin-Colin, Sylvie | Felder-Flesh, Delphine | Ghobril, C. | Pourroy, Geneviève | Simonet, Pascal | Ampère, Département Bioingénierie (BioIng) ; Ampère (AMPERE) ; École Centrale de Lyon (ECL) ; Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-École Centrale de Lyon (ECL) ; Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Micro et NanoMagnétisme (NEEL - MNM) ; Institut Néel (NEEL) ; Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire de Génie Electrique de Grenoble (G2ELab) ; Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS) | Science des Procédés Céramiques et de Traitements de Surface (SPCTS) ; Université de Limoges (UNILIM)-Ecole Nationale Supérieure de Céramique Industrielle (ENSCI)-Institut des Procédés Appliqués aux Matériaux (IPAM) ; Université de Limoges (UNILIM)-Université de Limoges (UNILIM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) ; Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE) ; Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique ; Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS) | CNRS and Cemagref interdisciplinary Ecological engineering program 2009 (“Nanogénomique” project) | ANR-09-CESA-0013,EMERGENT,Développement et application d'une méthode de marquage de l'ADN par des nanoparticules magnétiques pour définir le rôle des transferts horizontaux de gènes entre bactéries dans les processus de bio-atténuation des polluants du sol,(2009)
International audience | Horizontal gene transfers are critical mechanisms of bacterial evolution and adaptation that are involved to a significant level in the degradation of toxic molecules such as xenobiotic pesticides. However, understanding how these mechanisms are regulated in situ and how they could be used by man to increase the degradation potential of soil microbes is compromised by conceptual and technical limitations. This includes the physical and chemical complexity and heterogeneity in such environments leading to an extreme bacterial taxonomical diversity and a strong redundancy of genes and functions. In addition, more than 99 % of soil bacteria fail to develop colonies in vitro, and even new DNA-based investigation methods (metagenomics) are not specific and sensitive enough to consider lysis recalcitrant bacteria and those belonging to the rare biosphere. The objective of the ANR funded project “Emergent” was to develop a new culture independent approach to monitor gene transfer among soil bacteria by labeling plasmid DNA with magnetic nanoparticles in order to specifically capture and isolate recombinant cells using magnetic microfluidic devices. We showed the feasibility of the approach by using electrotransformation to transform a suspension of Escherichia coli cells with biotin-functionalized plasmid DNA molecules linked to streptavidin-coated superparamagnetic nanoparticles. Our results have demonstrated that magnetically labeled cells could be specifically retained on micromagnets integrated in a microfluidic channel and that an efficient selective separation can be achieved with the microfluidic device. Altogether, the project offers a promising alternative to traditional culture-based approaches for deciphering the extent of horizontal gene transfer events mediated by electro or natural genetic transformation mechanisms in complex environments such as soil.
Show more [+] Less [-]Effects of wind wave turbulence on the phytoplankton community composition in large, shallow Lake Taihu Full text
2015
Zhou, Jian | Qin, Boqiang | Casenave, Céline | Han, Xiaoxia | Yang, Guijun | Wu, Tingfeng | Wu, Pan | Ma, Jianrong | University of Chinese Academy of Sciences [Beijing] (UCAS) ; Chinese Academy of Sciences [Beijing] (CAS) | State Key Laboratory of Lake Science and Environment ; Nanjing Institute of Geography and Limnology | Nanjing Institute of Geography and Limnology (Niglas) ; Chinese Academy of Sciences [Beijing] (CAS) | Mathématiques, Informatique et STatistique pour l'Environnement et l'Agronomie (MISTEA) ; Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | College of Resources and Environmental Sciences (CRES) ; Nanjing Agricultural University (NAU) | School of Environmental and Civil Engineering [Wuxi] ; Jiangnan University | Key Laboratory of Reservoir Aquatic Environment ; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences (CIGIT) | National Science Foundation of China : 41230744, 41471021 ; Water Pollution Control and Management Project : 2012ZX07503-002 | European Project: 267196,EC:FP7:PEOPLE,FP7-PEOPLE-2010-COFUND,AGREENSKILLS(2012)
Effects of wind wave turbulence on the phytoplankton community composition in large, shallow Lake Taihu Full text
2015
Zhou, Jian | Qin, Boqiang | Casenave, Céline | Han, Xiaoxia | Yang, Guijun | Wu, Tingfeng | Wu, Pan | Ma, Jianrong | University of Chinese Academy of Sciences [Beijing] (UCAS) ; Chinese Academy of Sciences [Beijing] (CAS) | State Key Laboratory of Lake Science and Environment ; Nanjing Institute of Geography and Limnology | Nanjing Institute of Geography and Limnology (Niglas) ; Chinese Academy of Sciences [Beijing] (CAS) | Mathématiques, Informatique et STatistique pour l'Environnement et l'Agronomie (MISTEA) ; Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | College of Resources and Environmental Sciences (CRES) ; Nanjing Agricultural University (NAU) | School of Environmental and Civil Engineering [Wuxi] ; Jiangnan University | Key Laboratory of Reservoir Aquatic Environment ; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences (CIGIT) | National Science Foundation of China : 41230744, 41471021 ; Water Pollution Control and Management Project : 2012ZX07503-002 | European Project: 267196,EC:FP7:PEOPLE,FP7-PEOPLE-2010-COFUND,AGREENSKILLS(2012)
hal-01150611 | International audience | Wind waves are responsible for some of the spatio-temporal gradients observed in the biotic and abiotic variables in large shallow lakes. However, their effects on the phytoplankton community composition are still largely unexplored especially in freshwater systems such as lakes. In this paper, using field observations and mesocosm bioassay experiments, we investigated the impact of turbulence generated by wind waves on the phytoplankton community composition (especially on harmful cyanobacteria) in Lake Taihu, a large, shallow eutrophic lake in China. The composition of the phytoplankton community varied with the intensity of wind waves in the different areas of the lake. During summer, when wind waves were strong in the central lake, diatoms and green algae seemed to dominate while harmful cyanobacteria dominated in the weakly influenced Meiliang Bay. Turbulence bioassays also showed that diatoms and green algae were favoured by turbulent mixing. The critical time for the shift of the phytoplankton community composition was approximately 10 days under turbulent conditions. However, short-term (6 days) turbulence is rather beneficial for the dominance of cyanobacteria. This study suggests that the duration of wind events and their associated hydrodynamics are key factors to understanding the temporal and spatial changes of phytoplankton communities.
Show more [+] Less [-]Effects of wind wave turbulence on the phytoplankton community composition in large, shallow Lake Taihu Full text
2015
Zhou, Jian | Qin, Boqiang | Casenave, Céline | Han, Xiaoxia | Yang, Guijun | Wu, Tingfeng | Wu, Pan | Ma, Jianrong
Wind waves are responsible for some of the spatio-temporal gradients observed in the biotic and abiotic variables in large shallow lakes. However, their effects on the phytoplankton community composition are still largely unexplored especially in freshwater systems such as lakes. In this paper, using field observations and mesocosm bioassay experiments, we investigated the impact of turbulence generated by wind waves on the phytoplankton community composition (especially on harmful cyanobacteria) in Lake Taihu, a large, shallow eutrophic lake in China. The composition of the phytoplankton community varied with the intensity of wind waves in the different areas of the lake. During summer, when wind waves were strong in the central lake, diatoms and green algae seemed to dominate while harmful cyanobacteria dominated in the weakly influenced Meiliang Bay. Turbulence bioassays also showed that diatoms and green algae were favoured by turbulent mixing. The critical time for the shift of the phytoplankton community composition was approximately 10 days under turbulent conditions. However, short-term (6 days) turbulence is rather beneficial for the dominance of cyanobacteria. This study suggests that the duration of wind events and their associated hydrodynamics are key factors to understanding the temporal and spatial changes of phytoplankton communities.
Show more [+] Less [-]A coordinated set of ecosystem research platforms open to international research in ecotoxicology, AnaEE-France Full text
2015
Mougin, Christian | Azam, Didier | Caquet, Thierry | Cheviron, Nathalie | Dequiedt, Samuel | Le Galliard, Jean-François | Guillaume, Olivier | Houot, Sabine | Lacroix, Gérard | Lafolie, Francois | Maron, Pierre-Alain | Michniewicz, Radika | Pichot, Christian | Ranjard, Lionel | Roy, Jacques | Zeller, Bernhard | Clobert, Jean | Chanzy, Andre | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech | Université Paris Saclay (COmUE) | Plateforme BIOCHEM-ENV ; Institut National de la Recherche Agronomique (INRA) | Unité d'Ecologie et Ecotoxicologie Aquatiques (UEEA) ; Institut National de la Recherche Agronomique (INRA) | Département Ecologie des Forêts, Prairies et milieux Aquatiques (DEPT EFPA) ; Institut National de la Recherche Agronomique (INRA) | Agroécologie [Dijon] ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement | Institut d'écologie et des sciences de l'environnement de Paris (iEES) ; Institut National de la Recherche Agronomique (INRA)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS) | CEREEP-Ecotron Ile de France (UMS 3194) ; Département de Biologie - ENS-PSL (IBENS) ; École normale supérieure - Paris (ENS-PSL) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) | Station d’Ecologie Expérimentale du CNRS à Moulis (SEEM) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS) | Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH) ; Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Ecologie des Forêts Méditerranéennes (URFM) ; Institut National de la Recherche Agronomique (INRA) | Centre National de la Recherche Scientifique (CNRS) | Unité de recherche Biogéochimie des Ecosystèmes Forestiers (BEF) ; Institut National de la Recherche Agronomique (INRA) | ANR-10-EQPX-0013,PLANAQUA,PLAteforme expérimentale NAtionale d'écologie aQUAtique(2010) | ANR-11-INBS-0001,ANAEE-FR,ANAEE-Services(2011)
A coordinated set of ecosystem research platforms open to international research in ecotoxicology, AnaEE-France Full text
2015
Mougin, Christian | Azam, Didier | Caquet, Thierry | Cheviron, Nathalie | Dequiedt, Samuel | Le Galliard, Jean-François | Guillaume, Olivier | Houot, Sabine | Lacroix, Gérard | Lafolie, Francois | Maron, Pierre-Alain | Michniewicz, Radika | Pichot, Christian | Ranjard, Lionel | Roy, Jacques | Zeller, Bernhard | Clobert, Jean | Chanzy, Andre | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech | Université Paris Saclay (COmUE) | Plateforme BIOCHEM-ENV ; Institut National de la Recherche Agronomique (INRA) | Unité d'Ecologie et Ecotoxicologie Aquatiques (UEEA) ; Institut National de la Recherche Agronomique (INRA) | Département Ecologie des Forêts, Prairies et milieux Aquatiques (DEPT EFPA) ; Institut National de la Recherche Agronomique (INRA) | Agroécologie [Dijon] ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement | Institut d'écologie et des sciences de l'environnement de Paris (iEES) ; Institut National de la Recherche Agronomique (INRA)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS) | CEREEP-Ecotron Ile de France (UMS 3194) ; Département de Biologie - ENS-PSL (IBENS) ; École normale supérieure - Paris (ENS-PSL) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) | Station d’Ecologie Expérimentale du CNRS à Moulis (SEEM) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS) | Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH) ; Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Ecologie des Forêts Méditerranéennes (URFM) ; Institut National de la Recherche Agronomique (INRA) | Centre National de la Recherche Scientifique (CNRS) | Unité de recherche Biogéochimie des Ecosystèmes Forestiers (BEF) ; Institut National de la Recherche Agronomique (INRA) | ANR-10-EQPX-0013,PLANAQUA,PLAteforme expérimentale NAtionale d'écologie aQUAtique(2010) | ANR-11-INBS-0001,ANAEE-FR,ANAEE-Services(2011)
International audience | The infrastructure for Analysis and Experimentation on Ecosystems (AnaEE-France) is an integrated network of the major French experimental, analytical, and modeling platforms dedicated to the biological study of continental ecosystems (aquatic and terrestrial). This infrastructure aims at understanding and predicting ecosystem dynamics under global change. AnaEE-France comprises complementary nodes offering access to the best experimental facilities and associated biological resources and data: Ecotrons, seminatural experimental platforms to manipulate terrestrial and aquatic ecosystems, in natura sites equipped for large-scale and long term experiments. AnaEE-France also provides shared instruments and analytical platforms dedicated to environmental (micro) biology. Finally, AnaEEFrance provides users with data bases and modeling tools designed to represent ecosystem dynamics and to go further in coupling ecological, agronomical, and evolutionary approaches. In particular, AnaEE-France offers adequate services to tackle the new challenges of research in ecotoxicology, positioning its various types of platforms in an ecologically advanced ecotoxicology approach. AnaEE-France is a leading international infrastructure, and it is pioneering the construction of AnaEE (Europe) infrastructure in the field of ecosystem research. AnaEE-France infrastructure is already open to the international community of scientists in the field of continental ecotoxicology.
Show more [+] Less [-]A coordinated set of ecosystem research platforms open to international research in ecotoxicology, AnaEE-France Full text
2015
Mougin, Christian | Azam, Didier | Caquet, Thierry | Cheviron, Nathalie | Dequiedt, Samuel | Le Galliard, Jean-François | Guillaume, Olivier | Houot, Sabine | Lacroix, Gerard | Lafolie, François | Maron, Pierre-Alain | Michniewicz, Radika | Pichot, Christian | Ranjard, Lionel | Roy, Jacques | Zeller, Bernd | Clobert, Jean | Chanzy, André
The infrastructure for Analysis and Experimentation on Ecosystems (AnaEE-France) is an integrated network of the major French experimental, analytical, and modeling platforms dedicated to the biological study of continental ecosystems (aquatic and terrestrial). This infrastructure aims at understanding and predicting ecosystem dynamics under global change. AnaEE-France comprises complementary nodes offering access to the best experimental facilities and associated biological resources and data: Ecotrons, seminatural experimental platforms to manipulate terrestrial and aquatic ecosystems, in natura sites equipped for large-scale and long-term experiments. AnaEE-France also provides shared instruments and analytical platforms dedicated to environmental (micro) biology. Finally, AnaEE-France provides users with data bases and modeling tools designed to represent ecosystem dynamics and to go further in coupling ecological, agronomical, and evolutionary approaches. In particular, AnaEE-France offers adequate services to tackle the new challenges of research in ecotoxicology, positioning its various types of platforms in an ecologically advanced ecotoxicology approach. AnaEE-France is a leading international infrastructure, and it is pioneering the construction of AnaEE (Europe) infrastructure in the field of ecosystem research. AnaEE-France infrastructure is already open to the international community of scientists in the field of continental ecotoxicology.
Show more [+] Less [-]Impact of insecticide exposure on the predation activity of the European earwig Forficula auricularia Full text
2015
Malagnoux, Laure | Capowiez, Yvan | Rault, Magali | Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE) ; Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS) | Abeilles et environnement (AE) ; Institut National de la Recherche Agronomique (INRA) | Unité de recherche Plantes et Systèmes de Culture Horticoles (PSH) ; Institut National de la Recherche Agronomique (INRA) | Provence-Alpes-Cote d'Azur Region (France)
Impact of insecticide exposure on the predation activity of the European earwig Forficula auricularia Full text
2015
Malagnoux, Laure | Capowiez, Yvan | Rault, Magali | Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE) ; Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS) | Abeilles et environnement (AE) ; Institut National de la Recherche Agronomique (INRA) | Unité de recherche Plantes et Systèmes de Culture Horticoles (PSH) ; Institut National de la Recherche Agronomique (INRA) | Provence-Alpes-Cote d'Azur Region (France)
International audience | The European earwig Forficula auricularia is an effective predator in apple orchards. It is therefore crucial to study whether insecticides affect this natural pest control agent. Predation activity, i.e., the number of aphids eaten in 24 h, was determined under laboratory conditions after exposure of fourth-instar nymphs and adult earwigs to widely used insecticides (acetamiprid, chlorpyrifos-ethyl, deltamethrin, and spinosad), which were applied at the normal application rates. Inhibition of acetylcholinesterase and carboxylesterase activities were also measured as indicators of pesticide exposure. Predation activity decreased significantly in nymphs exposed to spinosad (62 %) and chlorpyrifos-ethyl (98 %) compared with controls. A similar response was found for both esterase activities. Spinosad had a stronger effect on AChE (-33 %) whereas chlorpyrifos-ethyl affected CbE activity preferentially (-59 %). Spinosad (20 % of controls), acetamiprid (28 %), and chlorpyrifos-ethyl (66 %) also significantly decreased the predation behavior of adult male but not female (5 to 40 %) earwigs. Adult AChE and CbE activities were also significantly reduced (28 to 67 % of controls) in pesticide-exposed earwigs. Our results suggest that earwigs should be included in the environmental risk assessment framework for authorization of newly marketed plant protection products. Their predation behavior appears to be a sensitive and complementary biomarker.
Show more [+] Less [-]Impact of insecticide exposure on the predation activity of the European earwig Forficula auricularia Full text
2015
Malagnoux, Laure | Capowiez, Yvan | Rault, Magali
The European earwig Forficula auricularia is an effective predator in apple orchards. It is therefore crucial to study whether insecticides affect this natural pest control agent. Predation activity, i.e., the number of aphids eaten in 24 h, was determined under laboratory conditions after exposure of fourth-instar nymphs and adult earwigs to widely used insecticides (acetamiprid, chlorpyrifos-ethyl, deltamethrin, and spinosad), which were applied at the normal application rates. Inhibition of acetylcholinesterase and carboxylesterase activities were also measured as indicators of pesticide exposure. Predation activity decreased significantly in nymphs exposed to spinosad (62 %) and chlorpyrifos-ethyl (98 %) compared with controls. A similar response was found for both esterase activities. Spinosad had a stronger effect on AChE (−33 %) whereas chlorpyrifos-ethyl affected CbE activity preferentially (−59 %). Spinosad (20 % of controls), acetamiprid (28 %), and chlorpyrifos-ethyl (66 %) also significantly decreased the predation behavior of adult male but not female (5 to 40 %) earwigs. Adult AChE and CbE activities were also significantly reduced (28 to 67 % of controls) in pesticide-exposed earwigs. Our results suggest that earwigs should be included in the environmental risk assessment framework for authorization of newly marketed plant protection products. Their predation behavior appears to be a sensitive and complementary biomarker.
Show more [+] Less [-]