Refine search
Results 801-810 of 4,029
In situ ingestion of microfibres by meiofauna from sandy beaches
2016
Gusmão, Felipe | Domenico, Maikon Di | Amaral, A. Cecília Z. | Martínez, Alejandro | Gonzalez, Brett C. | Worsaae, Katrine | Ivar do Sul, Juliana A. | Lana, Paulo da Cunha
Microfibres are widespread contaminants in marine environments across the globe. Detecting in situ ingestion of microfibres by small marine organisms is necessary to understand their potential accumulation in marine food webs and their role in marine pollution. We have examined the gut contents of meiofauna from six sandy beaches in the Atlantic Ocean and the Mediterranean. Out of twenty taxonomic groups, three species of the common sandy beach annelid Saccocirrus displayed in situ ingestion of microfibres in all sites. Laboratory observations showed that species of Saccocirrus are able to egest microfibres with no obvious physical injury. We suggest that their non-selective microphagous suspension-feeding behaviour makes Saccocirrus more prone to ingest microfibres. Although microfibres are rapidly egested with no apparent harm, there is still the potential for trophic transfer into marine food webs through predation of Saccocirrus.
Show more [+] Less [-]Development of multi-functional streetscape green infrastructure using a performance index approach
2016
Tiwary, A. | Williams, I.D. | Heidrich, O. | Namdeo, A. | Bandaru, V. | Calfapietra, C.
This paper presents a performance evaluation framework for streetscape vegetation. A performance index (PI) is conceived using the following seven traits, specific to the street environments – Pollution Flux Potential (PFP), Carbon Sequestration Potential (CSP), Thermal Comfort Potential (TCP), Noise Attenuation Potential (NAP), Biomass Energy Potential (BEP), Environmental Stress Tolerance (EST) and Crown Projection Factor (CPF). Its application is demonstrated through a case study using fifteen street vegetation species from the UK, utilising a combination of direct field measurements and inventoried literature data. Our results indicate greater preference to small-to-medium size trees and evergreen shrubs over larger trees for streetscaping. The proposed PI approach can be potentially applied two-fold: one, for evaluation of the performance of the existing street vegetation, facilitating the prospects for further improving them through management strategies and better species selection; two, for planning new streetscapes and multi-functional biomass as part of extending the green urban infrastructure.
Show more [+] Less [-]Persistence of detectable insecticidal proteins from Bacillus thuringiensis (Cry) and toxicity after adsorption on contrasting soils
2016
Hung, T.P. | Truong, L.V. | Binh, N.D. | Frutos, R. | Quiquampoix, H. | Staunton, S.
Insecticidal Cry, or Bt, proteins are produced by the soil-endemic bacterium, Bacillus thuringiensis and some genetically modified crops. Their environmental fate depends on interactions with soil. Little is known about the toxicity of adsorbed proteins and the change in toxicity over time. We incubated Cry1Ac and Cry2A in contrasting soils subjected to different treatments to inhibit microbial activity. The toxin was chemically extracted and immunoassayed. Manduca sexta was the target insect for biotests. Extractable toxin decreased during incubation for up to four weeks. Toxicity of Cry1Ac was maintained in the adsorbed state, but lost after 2 weeks incubation at 25 °C. The decline in extractable protein and toxicity were much slower at 4 °C with no significant effect of soil sterilization. The major driving force for decline may be time-dependent fixation of adsorbed protein, leading to a decrease in the extraction yield in vitro, paralleled by decreasing solubilisation in the larval gut.
Show more [+] Less [-]The washout effects of rainfall on atmospheric particulate pollution in two Chinese cities
2016
Guo, Ling-Chuan | Zhang, Yonghui | Lin, Hualiang | Zeng, Weilin | Liu, Tao | Xiao, Jianpeng | Rutherford, Shannon | Yau, Ching | Ma, Wenjun
Though rainfall is recognized as one of the main mechanisms to reduce atmospheric particulate pollution, few studies have quantified this effect, particularly the corresponding lag effect and threshold. This study aimed to investigate the association between rainfall and air quality using a distributed lag non-linear model. Daily data on ambient PM2.5 and PM2.5–10 (particulate matter with an aerodynamic diameter less than 2.5 μm and from 2.5 to 10 μm) and meteorological factors were collected in Guangzhou and Xi'an from 2013 to 2014. A better washout effect was found for PM2.5–10 than for PM2.5, and the rainfall thresholds for both particle fractions were 7 mm in Guangzhou and 1 mm in Xi'an. The decrease in PM2.5 levels following rain lasted for 3 and 6 days in Guangzhou and Xi'an, respectively. Rainfall had a better washout effect in Xi'an compared with that in Guangzhou. Findings from this study contribute to a better understanding of the washout effects of rainfall on particulate pollution, which may help to understand the category and sustainability of dust-haze and enforce anthropogenic control measures in time.
Show more [+] Less [-]Metal-free catalysis of persulfate activation and organic-pollutant degradation by nitrogen-doped graphene and aminated graphene
2016
Chen, Hao | Carroll, Kenneth C.
We evaluated three types of functionalized, graphene-based materials for activating persulfate (PS) and removing (i.e., sorption and oxidation) sulfamethoxazole (SMX) as a model emerging contaminant. Although advanced oxidative water treatment requires PS activation, activation requires energy or chemical inputs, and toxic substances are contained in many catalysts. Graphene-based materials were examined herein as an alternative to metal-based catalysts. Results show that nitrogen-doped graphene (N-GP) and aminated graphene (NH2-GP) can effectively activate PS. Overall, PS activation by graphene oxide was not observed in this study. N-GP (50 mg L−1) can rapidly activate PS (1 mM) to remove >99.9% SMX within 3 h, and NH2-GP (50 mg L−1) activated PS (1 mM) can also remove 50% SMX within 10 h. SMX sorption and total removal was greater for N-GP, which suggests oxidation was enhanced by increasing proximity to PS activation sites. Increasing pH enhanced the N-GP catalytic ability, and >99.9% SMX removal time decreased from 3 h to 1 h when pH increased from 3 to 9. However, the PS catalytic ability was inhibited at pH 9 for NH2-GP. Increases in ionic strength (100 mM NaCl or Na2SO4) and addition of radical scavengers (500 mM ethanol) both had negligible impacts on SMX removal. With bicarbonate addition (100 mM), while the catalytic ability of N-GP remained unaltered, NH2-GP catalytic ability was inhibited completely. Humic acid (250 mg L−1) was partially effective in inhibiting SMX removal in both N-GP and NH2-GP systems. These results have implications for elucidating oxidant catalysis mechanisms, and they quantify the ability of functionalization of graphene with hetero-atom doping to effectively catalyze PS for water treatment of organic pollutants including emerging contaminants.
Show more [+] Less [-]Characterization of toluene and ethylbenzene biodegradation under nitrate-, iron(III)- and manganese(IV)-reducing conditions by compound-specific isotope analysis
2016
Dorer, Conrad | Vogt, Carsten | Neu, Thomas R. | Stryhanyuk, Hryhoriy | Richnow, Hans-Hermann
Ethylbenzene and toluene degradation under nitrate-, Mn(IV)-, or Fe(III)-reducing conditions was investigated by compound specific stable isotope analysis (CSIA) using three model cultures (Aromatoleum aromaticum EbN1, Georgfuchsia toluolica G5G6, and a Azoarcus-dominated mixed culture). Systematically lower isotope enrichment factors for carbon and hydrogen were observed for particulate Mn(IV). The increasing diffusion distances of toluene or ethylbenzene to the solid Mn(IV) most likely caused limited bioavailability and hence resulted in the observed masking effect. The data suggests further ethylbenzene hydroxylation by ethylbenzene dehydrogenase (EBDH) and toluene activation by benzylsuccinate synthase (BSS) as initial activation steps. Notably, significantly different values in dual isotope analysis were detected for toluene degradation by G. toluolica under the three studied redox conditions, suggesting variations in the enzymatic transition state depending on the available TEA. The results indicate that two-dimensional CSIA has significant potential to assess anaerobic biodegradation of ethylbenzene and toluene at contaminated sites.
Show more [+] Less [-]Expressing lead isotopic compositions by fractional abundances for environmental source apportionment
2016
Zhi, Yuyou | Guo, Tiantian | Shi, Jiachun | Zeng, Lingzao | Wu, Laosheng
Lead (Pb) isotope has been extensively used to identify sources of Pb and apportion their contributions in the environment. Conventionally, isotope ratios are used to express Pb isotopic composition. However, the linear combination of Pb isotope ratios is not consistent with mass balance. Moreover, the graphical presentations based on Pb isotope ratios are always inconsistent when different Pb isotope ratios are used. In this study, we proposed to use fractional abundance to express Pb isotopic composition to achieve more accurate and reliable source apportionment. A new method (rotation-projection method) based on fractional abundance was developed in this research. The new method compared favorably to the isotopic ratio-based method and to another fractional abundance based method using default 204Pb value (0) (Walraven’s method). It allows to present four-dimensional (4-D) Pb isotope fractional abundance data in a 3-D plot. In the meantime, due to the low variation of the fractional abundance of 204Pb in the terrestrial ecosystem, the terrestrial Pb isotope fractional abundance data fell nearly on a plane, which further allows to plot the Pb isotope fractional abundance data on a two-dimensional diagram. Proper presentation of the isotopic composition data helps to achieve more accurate and reliable source identification and apportionment.
Show more [+] Less [-]Chemical mimicking of bio-assisted aluminium extraction by Aspergillus niger’s exometabolites
2016
Boriová, Katarína | Urík, Martin | Bujdoš, Marek | Pifková, Ivana | Matúš, Peter
Presence of microorganisms in soils strongly affects mobility of metals. This fact is often excluded when mobile metal fraction in soil is studied using extraction procedures. Thus, the first objective of this paper was to evaluate strain Aspergillus niger’s exometabolites contribution on aluminium mobilization. Fungal exudates collected in various time intervals during cultivation were analyzed and used for two-step bio-assisted extraction of alumina and gibbsite. Oxalic, citric and gluconic acids were identified in collected culture media with concentrations up to 68.4, 2.0 and 16.5 mmol L−1, respectively. These exometabolites proved to be the most efficient agents in mobile aluminium fraction extraction with aluminium extraction efficiency reaching almost 2.2%. However, fungal cultivation is time demanding process. Therefore, the second objective was to simplify acquisition of equally efficient extracting agent by chemically mimicking composition of main organic acid components of fungal exudates. This was successfully achieved with organic acids mixture prepared according to medium composition collected on the 12th day of Aspergillus niger cultivation. This mixture extracted similar amounts of aluminium from alumina compared to culture medium. The aluminium extraction efficiency from gibbsite by organic acids mixture was lesser than 0.09% which is most likely because of more rigid mineral structure of gibbsite compared to alumina. The prepared organic acid mixture was then successfully applied for aluminium extraction from soil samples and compared to standard single step extraction techniques. This showed there is at least 2.9 times higher content of mobile aluminium fraction in soils than it was previously considered, if contribution of microbial metabolites is considered in extraction procedures. Thus, our contribution highlights the significance of fungal metabolites in aluminium extraction from environmental samples, but it also simplifies the extraction procedure inspired by bio-assisted extraction of aluminium by common soil fungus A. niger.
Show more [+] Less [-]Oil spills and their impacts on sand beach invertebrate communities: A literature review
2016
Bejarano, Adriana C. | Michel, Jacqueline
Sand beaches are highly dynamic habitats that can experience considerable impacts from oil spills. This review provides a synthesis of the scientific literature on major oil spills and their impacts on sand beaches, with emphasis on studies documenting effects and recoveries of intertidal invertebrate communities. One of the key observations arising from this review is that more attention has generally been given to studying the impacts of oil spills on invertebrates (mostly macrobenthos), and not to documenting their biological recovery. Biological recovery of sand beach invertebrates is highly dynamic, depending on several factors including site-specific physical properties and processes (e.g., sand grain size, beach exposure), the degree of oiling, depth of oil burial, and biological factors (e.g., species-specific life-history traits). Recovery of affected communities ranges from several weeks to several years, with longer recoveries generally associated with physical factors that facilitate oil persistence, or when cleanup activities are absent on heavily oiled beaches. There are considerable challenges in quantifying impacts from spills on sand beach invertebrates because of insufficient baseline information (e.g., distribution, abundance and composition), knowledge gaps in their natural variability (spatial and temporal), and inadequate sampling and replication during and after oil spills. Thus, environment assessments of impacts and recovery require a rigorous experimental design that controls for confounding sources of variability. General recommendations on sampling strategies and toxicity testing, and a preliminary framework for incorporating species-specific life history traits into future assessments are also provided.
Show more [+] Less [-]An extended study on historical mercury accumulation in lake sediment of Shanghai: The contribution of socioeconomic driver
2016
Yang, Jing | Chen, Ling | Steele, Joshua Caleb | Chen, Rui-Shan | Meng, Xiang-Zhou
Rapid industrialization and urbanization has caused large emission and potential contamination of mercury (Hg) in urban environment. However, little is known about the impact of socioeconomic factor on Hg accumulation in sediment. In the present study, historical record of anthropogenic Hg deposition of Shanghai was reconstructed by using three sediment cores from three park lakes (C1: Luxun Park; C2: Fuxing island Park; C3: Xinjiangwan Park). Meanwhile, the influence of socioeconomic factor to Hg emissions and sedimentary record was calculated based on an extended STIRPAT (stochastic impacts by regression on population, affluence and technology) model. The profiles of Hg levels and fluxes in the three sediment cores showed that Shanghai has recently undergone urbanization. The anthropogenic Hg fluxes exhibited fluctuant increases from ∼1900 to present and accelerated after the establishment of the People’s Republic of China in 1949 and the implementation of reform and opening up policy in 1978. The mean flux ratios of Hg in post-2000 were 2.2, 12, and 2.7 in the C1, C2 and C3 cores, respectively. The extended STIRPAT model was constructed based on strong positive relationships between socioeconomic factors and Hg fluxes, revealing that the proportion of coal consumption, the urbanization rate, and the proportion of heavy industry were the three most important driving factors for Hg accumulations in urban sediment of Shanghai.
Show more [+] Less [-]