Refine search
Results 811-820 of 5,098
A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health
2018
Andrews, Martina | Shāhid, Muḥammad | Niazi, Nabeel Khan | Khalid, Sana | Murtaza, Behzad | Bibi, Irshad | Rashid, Muhammad Imtiaz
Selenium (Se) is an essential trace element for humans and animals, although controversial for different plant species. There exists a narrow line between essential, beneficial and toxic levels of Se to living organisms which greatly varies with Se speciation, as well as the type of living organisms. Therefore, it is crucial to monitor its solid- and solution-phase speciation, exposure levels and pathways to living organisms. Consumption of Se-laced food (cereals, vegetables, legumes and pulses) is the prime source of Se exposure to humans. Thus, it is imperative to assess the biogeochemical behavior of Se in soil-plant system with respect to applied levels and speciation, which ultimately affect Se status in humans. Based on available relevant literature, this review traces a plausible link among (i) Se levels, sources, speciation, bioavailability, and effect of soil chemical properties on selenium bioavailability/speciation in soil; (ii) role of different protein transporters in soil-root-shoot transfer of Se; and (iii) speciation, metabolism, phytotoxicity and detoxification of Se inside plants. The toxic and beneficial effects of Se to plants have been discussed with respect to speciation and toxic/deficient concentration of Se. We highlight the significance of various enzymatic (catalase, peroxidase, superoxide dismutase, ascorbate peroxidase, glutathione peroxidase) and non-enzymatic (phytochelatins and glutathione) antioxidants which help combat Se-induced overproduction of reactive oxygen species (ROS). The review also delineates Se accumulation in edible plant parts from soils containing low or high Se levels; elucidates associated health disorders or risks due to the consumption of Se-deficient or Se-rich foods; discusses the potential role of Se in different human disorders/diseases.
Show more [+] Less [-]Cation-induced coagulation of aquatic plant-derived dissolved organic matter: Investigation by EEM-PARAFAC and FT-IR spectroscopy
2018
Liu, Shasha | Zhu, Yuanrong | Liu, Leizhen | He, Zhongqi | Giesy, John P. | Bai, Yingchen | Sun, Fuhong | Wu, Fengchang
Complexation and coagulation of plant-derived dissolved organic matter (DOM) by metal cations are important biogeochemical processes of organic matter in aquatic systems. Thus, coagulation and fractionation of DOM derived from aquatic plants by Ca(II), Al(III), and Fe(III) ions were investigated. Metal ion-induced removal of DOM was determined by analyzing dissolved organic carbon in supernatants after addition of these metal cations individually. After additions of metal ions, both dissolved and coagulated organic fractions were characterized by use of fluorescence excitation emission matrix-parallel factor (EEM-PARAFAC) analysis and Fourier transform infrared (FT-IR) spectroscopy. Addition of Ca(II), Fe(III) or Al(III) resulted in net removal of aquatic plant-derived DOM. Efficiencies of removal of DOM by Fe(III) or Al(III) were greater than that by Ca(II). However, capacities to remove plant-derived DOM by the three metals were less than which had been previously reported for humic materials. Molecular and structural features of plant-derived DOM fractions in associations with metal cations were characterized by changes in fluorescent components and infrared absorption peaks. Both aromatic and carboxylic-like organic matters could be removed by Ca(II), Al(III) or Fe(III) ions. Whereas organic matters containing amides were preferentially removed by Ca(II), and phenolic materials were selectively removed by Fe(III) or Al(III). These observations indicated that plant-derived DOM might have a long-lasting effect on water quality and organisms due to its poor coagulation with metal cations in aquatic ecosystems. Plant-derived DOM is of different character than natural organic matter and it is not advisable to attempt removal through addition of metal salts during treatment of sewage.
Show more [+] Less [-]Adsorption of antibiotics on microplastics
2018
Li, Jia | Zhang, Kaina | Zhang, Hua
Microplastics and antibiotics are two classes of emerging contaminants with proposed negative impacts to aqueous ecosystems. Adsorption of antibiotics on microplastics may result in their long-range transport and may cause compound combination effects. In this study, we investigated the adsorption of 5 antibiotics [sulfadiazine (SDZ), amoxicillin (AMX), tetracycline (TC), ciprofloxacin (CIP), and trimethoprim (TMP)] on 5 types of microplastics [polyethylene (PE), polystyrene (PS), polypropylene (PP), polyamide (PA), and polyvinyl chloride (PVC)] in the freshwater and seawater systems. Scanning Electron Microscope (SEM) and X-ray diffractometer (XRD) analysis revealed that microplastics have different surface characterizes and various degrees of crystalline. Adsorption isotherms demonstrated that PA had the strongest adsorption capacity for antibiotics with distribution coefficient (Kd) values ranged from 7.36 ± 0.257 to 756 ± 48.0 L kg−1 in the freshwater system, which can be attributed to its porous structure and hydrogen bonding. Relatively low adsorption capacity was observed on other four microplastics. The adsorption amounts of 5 antibiotics on PS, PE, PP, and PVC decreased in the order of CIP > AMX > TMP > SDZ > TC with Kf correlated positively with octanol-water partition coefficients (Log Kow). Comparing to freshwater system, adsorption capacity in seawater decreased significantly and no adsorption was observed for CIP and AMX. Our results indicated that commonly observed polyamide particles can serve as a carrier of antibiotics in the aquatic environment.
Show more [+] Less [-]De- icing salt contamination reduces urban tree performance in structural soil cells
2018
Ordóñez Barona, Camilo | Sabetski, Vadim | Millward, Andrew A. | Steenberg, James
Salts used for de-icing roads and sidewalks in northern climates can have a significant impact on water quality and vegetation. Sub-surface engineering systems, such as structural soil cells, can regulate water runoff and pollutants, and provide the necessary soil volume and irrigation to grow trees. However, the ability of such systems to manage de-icing salt contamination, and the impact of this contamination on the trees growing in them, have not been evaluated. We report on an field investigation of de-icing salt contamination in structural cells in two street-revitalization projects in Toronto, Canada, and the impact of this contamination on tree performance. We analyzed soil chemistry and collected tree attributes; these data were examined together to understand the effect of salinity on tree mortality rates and foliar condition. Data collected from continuous soil salinity loggers from April to June for one of the two sites were used to determine whether there was a long-term accumulation of salts in the soils. Results for both sites indicate that both sites displayed high salinity and alkalinity, with levels elevated beyond those suggested before those reported to cause negative tree effects. For one site, trees that were alive and trees that had a better foliar condition had significantly lower levels of soil salinity and alkalinity than other trees. High salinity and alkalinity in the soil were also associated with lower nutrient levels for both sites. Although tests for salinity accumulation in the soils of one site were negative, a longer monitoring of the soil conditions within the soil cells is warranted. Despite structural cells being increasingly utilized for their dual role in storm-water management and tree establishment, there may be a considerable trade-off between storm-water management and urban-forest function in northern climates where de-icing salt application continues to be commonplace.
Show more [+] Less [-]Hormonal changes and folliculogenesis in female offspring of rats exposed to cadmium during gestation and lactation
2018
Li, Zhiliang | Li, Teng | Leng, Y. (Yang) | Chen, Shaomin | Liu, Qunxing | Feng, Jianfeng | Chen, Hongxia | Huang, Yadong | Zhang, Qihao
It has been suggested that the toxic effects of cadmium (Cd) may disrupt ovarian and uterine functions in adults. However, Cd exposure during gestation and lactation and its effects on the reproductive development in female offspring is still not clear, and the mechanisms underlying exposure toxicology remain mostly unexplored. To investigate how Cd exposure of female rats (F0) during gestation and lactation affects the reproductive development of their female offspring, we studied the steroidogenesis, folliculogenesis, puberty onset, and litter size of the first (F1) and second (F2) filial generations following F0 female rats which had been exposed to CdCl2. The mechanisms related to the early onset of puberty induced by such exposure in female offspring were explored. Maternal exposure to Cd dramatically increased the biosynthesis of steroid hormones in F1 female offspring by the activation of cAMP/PKA pathway and up-regulated expression of steroidogenesis related proteins such as StAR, CYP11A1, 3β-HSD and CYP19A1. The high levels of steroid hormones contributed to an early puberty onset, promoted the differentiation and maturation of follicles, and led to the proliferation of endometrium that resulted in a uterus weight gain. The increased number of antral follicles eventually caused a big litter size. Despite of being free from additional Cd exposure, the levels of CYP11A1 and CYP19A1 in the ovaries of F2 female rats were also high, which resulted in a high concentration of serum progesterone. These results suggested that hormonal changes induced by exposure to Cd in utero might have a lasting effect beyond the first generation. These findings may help to better understand the origin of female sexual dysfunction in the developmental stages in general.
Show more [+] Less [-]Trends in historical mercury deposition inferred from lake sediment cores across a climate gradient in the Canadian High Arctic
2018
Korosi, Jennifer B. | Griffiths, Katherine | Smol, J. P. (John P.) | Blais, Jules M.
Recent climate change may be enhancing mercury fluxes to Arctic lake sediments, confounding the use of sediment cores to reconstruct histories of atmospheric deposition. Assessing the independent effects of climate warming on mercury sequestration is challenging due to temporal overlap between warming temperatures and increased long-range transport of atmospheric mercury following the Industrial Revolution. We address this challenge by examining mercury trends in short cores (the last several hundred years) from eight lakes centered on Cape Herschel (Canadian High Arctic) that span a gradient in microclimates, including two lakes that have not yet been significantly altered by climate warming due to continued ice cover. Previous research on subfossil diatoms and inferred primary production indicated the timing of limnological responses to climate warming, which, due to prevailing ice cover conditions, varied from ∼1850 to ∼1990 for lakes that have undergone changes. We show that climate warming may have enhanced mercury deposition to lake sediments in one lake (Moraine Pond), while another (West Lake) showed a strong signal of post-industrial mercury enrichment without any corresponding limnological changes associated with warming. Our results provide insights into the role of climate warming and organic carbon cycling as drivers of mercury deposition to Arctic lake sediments.
Show more [+] Less [-]Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems
2018
Su, Lei | Cai, Huiwen | Kolandhasamy, Prabhu | Wu, Chenxi | Rochman, Chelsea M. | Shi, Huahong
Bioindicators play an important role in understanding pollution levels, bioavailability and the ecological risks of contaminants. Several bioindicators have been suggested for understanding microplastic in the marine environment. A bioindicator for microplastics in the freshwater environment does not exist. In our previous studies, we found a high frequency of microplastic pollution in the Asian clam (Corbicula fluminea) in Taihu Lake, China. In the present study, we conducted a large-scale survey of microplastic pollution in Asian clams, water and sediment from 21 sites in the Middle-Lower Yangtze River Basin from August to October of 2016. The Asian clam was available in all sites, which included diverse freshwater systems such as lakes, rivers and estuaries. Microplastics were found at concentrations ranging from 0.3-4.9 items/g (or 0.4–5.0 items/individual) in clams, 0.5–3.1 items/L in water and 15–160 items/kg in sediment. Microfibers were the most dominant types of microplastics found, accounting for 60–100% in clams across all sampling sites. The size of microplastics ranged from 0.021-4.83 mm, and microplastics in the range of 0.25–1 mm were dominant. The abundance, size distribution and color patterns of microplastics in clams more closely resembled those in sediment than in water. Because microplastic pollution in the Asian clam reflected the variability of microplastic pollution in the freshwater environments, we demonstrated the Asian clam as an bioindicator of microplastic pollution in freshwater systems, particularly for sediments.
Show more [+] Less [-]Occurrence and distribution of old and new halogenated flame retardants in mosses and lichens from the South Shetland Islands, Antarctica
2018
Kim, Jun-Tae | Choi, Yun-Jeong | Barghi, Mandana | Yoon, Young-Jun | Kim, Jeong-Hoon | Kim, Ji Hee | Chang, Yoon Seok
The spatial distribution of old and new halogenated flame retardants (HFRs), including polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDs), and Dechlorane Plus (DPs) and related compounds (Dechloranes), were investigated in the South Shetland Islands of Antarctica, employing mosses (Andreaea depressinervis and Sanionia uncinata) and lichens (Himantormia lugubris and Usnea antarctica) as bioindicators. The levels of PBDEs, HBCDs, and Dechloranes ranged from 3.2 to 71.5, 0.63–960, and 2.04–2400 pg/g dw (dry weight) in the mosses, and from 1.5 to 188, 0.1–21.1, and 1.0–83.8 pg/g dw in the lichens, respectively. HFRs were detected in all of the collected samples, even in those from the remote regions. The dominance of high brominated-BDE, anti-DP fraction, and HBCD diastereomeric ratio in the samples from remote regions suggested the long-range atmospheric transport (LRAT) of the HFRs. The relatively high HBCDs and Dechloranes contamination and their similar chemical profile with commercial products in the vicinity of Antarctic research stations indicated that human activities might act as local sources, while PBDEs appeared to be more influenced by LRAT and bioaccumulation rather than local emission. Lastly, the relatively high HFR levels and dominance of more brominated BDEs at the Narębski Point and in the wet lowlands suggested that penguin colonies and melting glacier water could be secondary HFR sources in Antarctica. The HFR levels differed by sample species, suggesting that further research on the factors associated with the HFR accumulation in the different species is necessary. This study firstly reports the alternative HFR levels in a wide area of the Antarctica, which could improve our understanding of the source, transport, and fate of the HFRs.
Show more [+] Less [-]Complex migration of antibiotic resistance in natural aquatic environments
2018
Gao, Hui | Zhang, Linxiao | Lu, Zihao | He, Chunming | Li, Qianwei | Na, Guangshui
Antibiotic resistance is a worsening global concern, and the environmental behaviors and migration patterns of antibiotic resistance genes (ARGs) have attracted considerable interest. Understanding the long-range transport of ARG pollution is crucial. In this study, we characterized the dynamics of ARG changes after their release into aquatic environments and demonstrated the importance of traditional chemical contaminants in the transmission mechanisms of ARGs. We hypothesized that the main route of ARG proliferation switches from active transmission to passive transmission. This antibiotic-dominated switch is motivated and affected by non-corresponding contaminants. The effect of anthropogenic activities gradually weakens from inland aquatic environments to ocean environments; however, the effect of changes in environmental conditions is enhanced along this gradient. The insights discussed in this study will help to improve the understanding of the distribution and migration of ARG pollution in various aquatic environments, and provide a modern perspective to reveal the effect of corresponding contaminants and non-corresponding contaminants in the process of antibiotic resistance proliferation.
Show more [+] Less [-]Salt marsh denitrification is impacted by oiling intensity six years after the Deepwater Horizon oil spill
2018
Tatariw, Corianne | Flournoy, Nikaela | Kleinhuizen, Alice A. | Tollette, Derek | Overton, Edward B. | Sobecky, Patricia A. | Mortazavi, Behzad
Coastal salt marshes provide the valuable ecosystem service of removing anthropogenic nitrogen (N) via microbially-mediated denitrification. During the 2010 Deepwater Horizon (DWH) spill, oil exposure killed marsh plants in some regions and contributed to rapid compositional shifts in sediment microbial communities, which can impact ecosystem denitrification capacity. Within 3–5 years of the spill, plant biomass and microbial communities in some impacted marshes can recover to a new stable state. The objective of this study was to determine whether marsh recovery 6 years after the DWH oil spill results in subsequent recovery of denitrification capacity. We measured denitrification capacity (isotope pairing technique), microbial 16S rRNA gene composition, and denitrifier abundance (quantitative PCR) at sites subjected to light, moderate, and heavy oiling during the spill that were not targeted by any clean-up efforts. There were no differences in plant belowground biomass, sediment extractable NH₄⁺, inorganic nitrogen flux, 16S rRNA composition, 16S rRNA diversity, or denitrifier functional gene (nirS, norB, and nosZ) abundances associated with oiling status, indicating that certain drivers of ecosystem denitrification capacity have recovered or achieved a new stable state six years after the spill. However, on average, denitrification capacities at the moderately and heavily oiled sites were less than 49% of that of the lightly oiled site (27.7 ± 14.7 and 37.2 ± 24.5 vs 71.8 ± 33.8 μmol N m⁻² h⁻¹, respectively). The presence of heavily weathered oiled residue (matched and non-matched for MC252) had no effect on process rates or microbial composition. The loss of function at the moderately and heavily oiled sites compared to the lightly oiled site despite the comparable microbial and environmental factors suggests that oiling intensity plays a role in the long-term recovery of marsh ecosystem services.
Show more [+] Less [-]