Refine search
Results 831-840 of 7,988
Polyethylene microbeads are more critically toxic to the eyes and reproduction than the kidneys or growth in medaka, Oryzias latipes
2021
Chisada, Shinichi | Yoshida, Masao | Karita, Kanae
Many studies using experimental and wild animals have reported negative effects of microplastic beads (MPs) ingestion. However, data regarding the lowest observed adverse effect levels (LOAELs) of MPs remain limited. Our aim was to evaluate the adverse effect levels of polyethylene MPs (10–63 μm diameter) with respect to growth, reproduction, and the eyes and kidneys of medaka (Oryzias latipes) under breeding conditions to contribute to future research involving LOAEL determinations. Fish were exposed to 0.009 mg-MPs (approximately 1000 particles)/L to 0.32 mg-MPs (approximately 40,000 particles)/L for 12 weeks. The eyes and kidneys were evaluated by histopathologic analysis. Although histologic analyses indicated an absence of MPs in the tissues, the eyes and kidneys as well as reproduction were adversely affected by increasing MP concentrations. The number of spawned eggs decreased, and changes were noted in the eyes of fish exposed to ≥0.032 mg-MPs/L under breeding conditions. The eyes exhibited thinning of the optic nerve fiber layer and dilatation of retinal capillaries compared with medaka not treated with MPs. Changes in the kidneys were observed in fish exposed to ≥0.065 mg-MPs/L. The mesangial matrix in the glomerulus of the kidneys was expanded compared with non-treated medaka, suggesting a deterioration in renal function. Analyses of an oxidative stress marker in the tissues indicated that lesion progression was associated with increased oxidative stress. Furthermore, a comparison of adverse effect levels suggested that MPs were more toxic to the eyes and reproduction than the kidneys or growth. Our data should prove useful for determining the LOAELs of polyethylene beads on vertebrates and enhance understanding of the mechanism underlying the biological toxicity of polyethylene MPs.
Show more [+] Less [-]Effects of biochar on catalysis treatment of 4-nonylphenol in estuarine sediment and associated microbial community structure
2021
Hung, Chang-Mao | Huang, Jinbao | Chen, Chiu-Wen | Hsieh, Shu-Ling | Dong, Cheng-Di
The effect of pyrolysis temperature on the generation of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge biochar (SSB) and the removal of hazardous chemicals from esturine sediments by SSB and sodium percarbonate (SPC), exemplified by 4-nonylphenol (4-NP) were studied. SSB synthesized at 500 °C (SSB500) achieved the highest 4-NP degradation efficiency of 73%, at pH₀ 9.0 in 12 h of reaction time. The enhanced 4-NP degradation was attributed to the SSB500 activation activation of SPC that produced sufficient •OH and CO₃⁻• due to electron-transfer interaction on the Fe–Mn redox pairs. The microbial community diversity and composition of the treated sediment were compared using high-throughput sequencing. Results showed SSB/SPC treatment increased the microbial diversity and richness in the sediments. Proteobacteria were the keystone phylum, while Thioalkalispira genera were responsible for 4-NP degradation in the SSB/SPC treatment. Over all, results revealed the change in the bacterial community during the environmental applications of SSB, which provided essential information for better understanding of the monitoring and improvement of sustainable sediment ecosystems.
Show more [+] Less [-]Strigolactone GR24 improves cadmium tolerance by regulating cadmium uptake, nitric oxide signaling and antioxidant metabolism in barley (Hordeum vulgare L.)
2021
Qiu, Cheng-Wei | Zhang, Can | Wang, Nian-Hong | Mao, Weihua | Wu, Feibo
Cadmium (Cd) in the food chain poses a serious hazard to human health. Therefore, a greenhouse hydroponic experiment was conducted to examine the potential of exogenously strigolactone GR24 in lessening Cd toxicity and to investigate its physiological mechanisms in the two barley genotypes, W6nk2 (Cd-sensitive) and Zhenong8 (Cd-tolerant). Exogenous application of 1 μM GR24 (strigol analogue) reduced the suppression of growth caused by 10 μM Cd, lowered plant Cd contents, increased the contents of other nutrient elements, protected chlorophyll, sustained photosynthesis, and markedly reduced Cd-induced H₂O₂ and malondialdehyde accumulation in barley. Furthermore, exogenous GR24 markedly increased NO contents and nitric oxide synthase activity in the Cd-sensitive genotype, W6nk2, effectively alleviating the Cd-induced repression of the activities of superoxide dismutase and peroxidase, increasing reduced glutathione (GSH) and ascorbic acid (AsA) pools and activities of AsA-GSH cycle including ascorbate peroxidase, glutathione peroxidase, glutathione reductase, dehydroascorbate reductase and monodehydroascorbate reductase. The findings of the present study indicate that GR24 could be a candidate for Cd detoxification by decreasing Cd contents, balancing nutrient elements, and protecting barley plants from toxic oxidation via indirectly eliminating reactive oxygen species (ROS), consequently contributing to reducing the potential risk of Cd pollution.
Show more [+] Less [-]Carbamazepine induces hepatotoxicity in zebrafish by inhibition of the Wnt/β-catenin signaling pathway
2021
Bai, Zhonghui | Jia, Kun | Chen, Guilan | Liao, Xinjun | Cao, Zigang | Zhao, Yangqi | Zhang, Chunping | Lu, Huiqiang
As drug abuse has become increasingly serious, carbamazepine (CBZ) is discharged into the aquatic environment with municipal sewage, causing potential harm to aquatic organisms. Here, we utilized zebrafish, an aquatic vertebrate model, to comprehensively evaluate the hepatotoxicity of CBZ. The larvae were exposed to 0.07, 0.13, and 0.26 mmol/L CBZ from 72 hpf to 144 hpf, and the adults were exposed to 0.025, 0.05, and 0.1 mmol/L CBZ for 28 days. The substantial changes were observed in the size and histopathology of livers, indicating that CBZ induced severe hepatoxicity in the larvae and adults. Oil red O staining demonstrated CBZ exposure caused severe lipid accumulation in the livers of both larvae and adults. Furthermore, CBZ exposure facilitated hepatocyte apoptosis through TUNEL staining, which was caused by rising ROS content. Subsequently, down-regulation of genes related to the Wnt pathway in exposure groups indicated that CBZ inhibited the development of liver via the Wnt/β-catenin signaling pathway. In conclusion, CBZ induced severe hepatotoxicity by promoting lipid accumulation, generating excessive ROS production, and inhibiting the Wnt/β-catenin signaling pathway in zebrafish. The results reveal the occurrence of CBZ-induced hepatotoxicity in zebrafish and clarify its mechanism of action, which potentially illustrate environmental concerns associated with CBZ exposure.
Show more [+] Less [-]Pilot study on the urinary excretion of the glyphosate metabolite aminomethylphosphonic acid and breast cancer risk: The Multiethnic Cohort study
2021
Franke, Adrian A. | Li, Xingnan | Shvetsov, Yurii B. | Lai, Jennifer F.
Breast cancer is the most commonly diagnosed female cancer and the second leading cause of death in women in the US, including Hawaii. Accumulating evidence suggests that aminomethylphosphonic acid (AMPA), the primary metabolite of the herbicide glyphosate—a probable human carcinogen, may itself be carcinogenic. However, the relationship between urinary AMPA excretion and breast cancer risk in women is unknown. In this pilot study, we investigated the association between pre-diagnostic urinary AMPA excretion and breast cancer risk in a case-control study of 250 predominantly postmenopausal women: 124 cases and 126 healthy controls (individually matched on age, race/ethnicity, urine type, date of urine collection, and fasting status) nested within the Hawaii biospecimen subcohort of the Multiethnic Cohort. AMPA was detected in 90% of cases and 84% of controls. The geometric mean of urinary AMPA excretion was nearly 38% higher among cases vs. controls (0.087 vs 0.063 ng AMPA/mg creatinine) after adjusting for race/ethnicity, age and BMI. A 4.5-fold higher risk of developing breast cancer in the highest vs. lowest quintile of AMPA excretion was observed (ORQ₅ ᵥₛ. Q₁: 4.49; 95% CI: 1.46–13.77; pₜᵣₑₙd = 0.029). To our knowledge, this is the first study to prospectively examine associations between urinary AMPA excretion and breast cancer risk. Our preliminary findings suggest that AMPA exposure may be associated with increased breast cancer risk; however, these results require confirmation in a larger population to increase study power and permit careful examinations of race/ethnicity differences.
Show more [+] Less [-]Particulate matter promotes hyperpigmentation via AhR/MAPK signaling activation and by increasing α-MSH paracrine levels in keratinocytes
2021
Shi, Yaqian | Zeng, Zhuotong | Liu, Jiani | Pi, Zixin | Zou, Puyu | Deng, Qiancheng | Ma, Xinyu | Qiao, Fan | Xiong, Weiping | Zhou, Chengyun | Zeng, Qinghai | Xiao, Rong
Particulate matter with an aerodynamic equivalent diameter of 2.5 μm or less in ambient air (PM2.5) has become a global public and environmental problem, and the control of the PM2.5 concentration in air is an urgent problem. PM2.5 can easily penetrate the skin, activating the inflammatory response in skin, unbalancing the skin barrier function, and inducing skin aging. Hyperpigmentation is the main manifestation of skin aging and has a considerable impact on quality of life worldwide. To date, no research on the influence of PM2.5 on hyperpigmentation has been conducted. Here, we illustrate that PM2.5 can induce melanogenesis in vivo and in vitro by regulating TYR, TYRP1, TYRP2, and MITF expression via AhR/MAPK signaling activation. Furthermore, PM2.5 increased α-MSH paracrine levels, which in turn promote hyperpigmentation. Our results provide a deeper understanding of how PM2.5 disrupts skin homeostasis and function. Treatment with AhR antagonists may be a potential therapeutic strategy for hyperpigmentation induced by PM2.5.
Show more [+] Less [-]Seaweeds fast EDC bioremediation: Supporting evidence of EE2 and BPA degradation by the red seaweed Gracilaria sp., and a proposed model for the remedy of marine-borne phenol pollutants
2021
Astrahan, Peleg | Korzen, Leor | Khanin, Marina | Sharoni, Yoav | Israel, Alvaro
In the last few decades, Endocrine Disrupting Chemicals (EDCs) have taken significant roles in creating harmful effects to aquatic organisms. Many proposed treatment applications are time consuming, expensive and focus mainly on waste water treatment plants (WWTP), which are indeed a major aquatic polluting source. Nonetheless, the marine environment is the ultimate sink of many pollutants, e.g. EDCs, and has been largely neglected mainly due to the challenge in treating such salty and immense open natural ecosystems. In this study we describe the bromination and the yet unpresented degradation process of high concentrations (5 mg/L) of phenolic EDCs, by the marine red macroalgaeGracilaria sp. As shown, 17α-Ethinylestradiol (EE2), a well-known contraceptive drug, and one of the most persistent phenol EDCs in the environment, was eliminated from both the medium and tissues of the macroalga, in addition to the degradation of all metabolites as verified by the nil estrogenic activity recorded in the medium. Validation of the proposed bromination-degradation route was reinforced by identifying Bisphenol A (BPA) brominated degradation products only, following 168H of incubation in the presence of Gracilaria sp. As demonstrated in this assay for EE2, BPA and finally for paracetamol, it is likely that the phenol scavenging activity is nonspecific and, thus, possibly even a wider scope of various other phenol-based pollutants might be treated in coastal waters. As far as we know, Gracilaria sp. is the only marine sessile organism able of degrading various phenol based pollutants. The worldwide distribution of many Gracilaria species and their wide aquaculture knowhow, suggest that bioremediation based on these seaweeds is a possible cost effective progressive solution to the treatment of a wide scope of phenols at the marine environment.
Show more [+] Less [-]Targeting the right parameters in PAH remediation studies
2021
Davin, Marie | Colinet, Gilles | Fauconnier, Marie-Laure
Contaminated land burdens the economy of many countries and must be dealt with.Researchers have published thousands of documents studying and developing soil and sediment remediation treatments. Amongst the targeted pollutants are the polycyclic aromatic hydrocarbons (PAHs), described as a class of persistent organic compounds, potentially harmful to ecosystems and living organisms.The present paper reviews and discusses three scientific trends that are leading current PAH-contaminated soil/sediment remediation studies and management.First, the choice of compounds that are being studied and targeted in the scientific literature is discussed, and we suggest that the classical 16 US-EPA PAH compounds might no longer be sufficient to meet current environmental challenges.Second, we discuss the choice of experimental material in remediation studies. Using bibliometric measures, we show the lack of PAH remediation trials based on co-contaminated or aged-contaminated material.Finally, the systematic use of the recently validated bioavailability measurement protocol (ISO/TS 16751) in remediation trials is discussed, and we suggest it should be implemented as a tool to improve remediation processes and management strategies.
Show more [+] Less [-]Acute toxicity of Bisphenol A (BPA) to tropical marine and estuarine species from different trophic groups
2021
Naveira, Clarissa | Rodrigues, Nathália | Santos, Fernanda S. | Santos, Luciano N. | Neves, Raquel A.F.
BPA is chemical pollutant of very high concern due to its toxicity to the environment and risks for human health. Environmental concern consists in BPA entrance into aquatic ecosystems due to acute and chronic toxicity to invertebrates and vertebrates. This study aimed to determine acute BPA toxicity to tropical estuarine-marine species of four trophic levels and integrate BPA toxicity values using species sensitivity distribution (SSD) analysis. Our hypothesis is that BPA toxicity increases towards higher trophic levels. Microalga (Tetraselmis sp.), zooplanktonic grazer (Artemia salina), deposit-feeder invertebrate (Heleobia australis), and omnivorous fish (Poecilia vivipara) were chosen as experimental models. Tetraselmis sp. showed the highest BPA tolerance, without a concentration-dependent response. Species sensitivity have increased from A. salina (LC₅₀,₉₆ₕ = 107.2 mg L⁻¹), followed by H. australis (LC₅₀,₉₆ₕ = 11.53.5 mg L⁻¹), to P. vivipara (LC₅₀,₉₆ₕ = 3.5 mg L⁻¹). Despite the toxicity hierarchy towards trophic levels, which partially supported our hypothesis, SSD did not evidence a clear pattern among estuarine-marine trophic groups. Our study disclosed the sensitivity of not yet investigated species to BPA and, in an integrative way, highlighted BPA toxic effects at different trophic levels. Although estimated acute hazardous concentration (HC5 = 1.18 mg L⁻¹) for estuarine and marine species was higher than environmentally relevant concentrations, sublethal adverse effects induced by BPA exposure may lead to unbalances in population levels and consequently affect the ecological functioning of tropical coastal systems.
Show more [+] Less [-]Occurrence and seasonal distribution of five selected endocrine-disrupting compounds in wastewater treatment plants of the Metropolitan Area of Monterrey, Mexico: The role of water quality parameters
2021
López-Velázquez, Khirbet | Guzmán-Mar, Jorge L. | Saldarriaga-Noreña, Hugo A. | Murillo-Tovar, Mario A. | Hinojosa-Reyes, Laura | Villanueva-Rodríguez, Minerva
Five endocrine-disrupting compounds (EDCs) were determined in four urban wastewater treatment plants (WWTPs) of the Metropolitan Area of Monterrey (MAM) in two seasonal periods (winter and summer). The MAM, one of the most urbanized areas in Mexico, is characterized by high industrial activity and population density, leading to extensive use of several EDCs. In the MAM, ∼90% of urban and industrial wastewater is treated in WWTPs, where EDCs can be partially eliminated. In this work, dissolved levels of 17β-estradiol (E2), 17α-ethinyl estradiol (EE2), bisphenol A (BPA), 4-nonylphenol (4NP), and 4-tert-octylphenol (4TOP) in wastewater were determined. The EDCs’ determination was carried out through solid-phase extraction (SPE) and gas chromatography coupled to mass spectrometry (GC-MS). High EDCs levels (0.4–450 ng/L) were found in the influents of WWTPs, while concentrations in the effluents ranged from 0.2 to 26.8 ng/L, with E2, EE2, and 4TOP being the most persistent. The Spearman correlation analysis revealed the association between E2 and EE2 (r = 0.4835, p < 0.05), and between BPA and 4NP (r = 0.5180, p < 0.05), suggesting that these EDCs have similar sources. Also, E2, BPA, and 4TOP were positively correlated with the chemical oxygen demand (COD), biochemical oxygen demand (BOD), and total suspended solids (TSS) (r = 0.4080–0.5694, p < 0.05), indicating the association of the EDCs with the organic matter in the wastewater. The factor analysis confirmed the significant correlation of COD, BOD, TSS, temperature, and pH with the high occurrence of 4TOP during the summer. It was also confirmed that summer warmer temperatures favored the removal of BPA and 4NP in the studied WWTPs. Finally, the studied sites were classified by cluster analysis in three groups, revealing the impact that seasonality has on the behavior of the selected EDCs.
Show more [+] Less [-]