Refine search
Results 831-840 of 8,010
Environmental stress responses in sympatric congeneric crustaceans: Explaining and predicting the context-dependencies of invader impacts Full text
2021
Ros, Macarena | Guerra-garcía, José M. | Lignot, Jehan-hervé | Rivera-ingraham, Georgina A.
The role of ecophysiology in mediating marine biological pollution is poorly known. Here we explore how physiological plasticity to environmental stress can explain and predict the context-dependencies of invasive species impacts. We use the case of two sympatric skeleton shrimps, the invader Caprella scaura and its congener C. equilibra, which is currently replaced by the former on the South European coast. We compare their physiological responses to hyposalinity stress under suboptimal low and high temperature, while inferring on hypoxia tolerance. We use an energy-redox approach, analyzing mortality rate, the energetic balance and the consequent effects on the oxidative homeostasis. We found that decreased seawater salinity and/or oxygen levels can weaken biotic resistance, especially in females of C. equilibra, leading to periods of heightened vulnerability to invasion. Our approach provides mechanistic insights towards understanding the factors promoting invader impacts, highlighting the potential of ecophysiology for improving invasive species management.
Show more [+] Less [-]Selection of parameters for seagrass management: Towards the development of integrated indicators for French Antilles Full text
2021
Kerninon, Fanny | Payri, Claude E. | Le Loch, Francois | Alcoverro, Teresa | Maréchal, Jean-philippe | Chalifour, Julien | Gréaux, Sebastien | Mège, Simone | Athanase, Julien | Cordonnier, Sébastien | Rouget, Marie-laure | Lorre, Elise | Uboldi, Thomas | Monnier, Olivier | Hellio, Claire
Seagrass beds are increasingly impacted by human activities in coastal areas, particularly in tropical regions. The objective of this research program was to study seagrass beds characteristics under various environmental conditions in the French Antilles (FA, Caribbean Sea). A total of 61 parameters, from plant physiology to seagrass ecosystem, were tested along a gradient of anthropogenic conditions, distributed across 11 sites and 3 islands of the FA. A selection of 7 parameters was identified as relevant for the monitoring of seagrass meadows in the framework of public policies. They combined “early warning indicators” (e.g. nutrients and some trace metals) and long-term responding parameters (e.g. shoot density) adapted to management time scales. The ecological status of seagrass meadows was evaluated using a PCA. This work is a first step towards monitoring and management of seagrass meadows in the FA.
Show more [+] Less [-]Factors that influence trace element levels in blood and feathers of Pygoscelis penguins from South Shetland Islands, Antarctica Full text
2021
Padilha, J. A. | Carvalho, G. O. | Espejo, W. | Souza, J. S. | Pizzochero, A. C. | Cunha, L. S. T. | Costa, E. S. | Pessoa, A. R. L. | Almeida, A. P. | Torres, J. P. M. | Lepoint, G. | Michel, Loic | Das, K. | Dorneles, P. R.
Contaminant levels are lower in Antarctica than elsewhere in the world because of its low anthropogenic activities. However, the northern region of the Antarctic Peninsula, is close to South America and experiences the greatest anthropogenic pressure in Antarctica. Here, we investigated, in two Antarctic Peninsula islands, intra and interspecific factors that influence the concentrations of 17 trace elements (TEs) in blood and feathers of three penguin species breeding sympatrically in relation to their trophic ecology assessed via a stable isotopic approach (C, N and S). Geographical location, foraging zone (delta C-13 and delta S-34) and diet influences the interspecific difference, and sex and maturity stage diet influence the intraspecific difference of Pygoscelis penguins. Penguins from Livingston showed higher values (mean, ng. g(-1), dry weight - dw) of Zn (103), Mn (0.3), and Fe (95) than those from King George Island (Zn: 80, Mn: 1.9, and Fe: 11). Gender-related differences were observed, as males showed significantly higher values (mean, ng. g(-1), dw) of Rb (3.4) and delta N-15 in blood of gentoo, and Ca (1344) in Adelie feathers. Chicks of gentoo and Adelie presented higher Zn, Mg, Ca, and Sr and lower C-13 values in blood than adults. The highest concentrations (mean, ng. g(-1), dw) of Cd (0.2) and Cu (26), and the lowest delta N-15 values were found in chinstrap. Geographical, intraspecific (i.e., ontogenetic and gender-related) and interspecific differences in feeding seemed to have influenced TE and stable isotope values in these animals. The TE bioaccumulation by penguins may have also been influenced by natural enrichment in environmental levels of these elements, which seems to be the case for Fe, Zn, and Mn. However, the high level of some of the TEs (Mn, Cd, and Cr) may reflect the increase of local and global human activities.
Show more [+] Less [-]Heavy ozone pollution episodes in urban Beijing during the early summertime from 2014 to 2017: Implications for control strategy Full text
2021
Zhang, Xin | Li, Hong | Wang, Xuezhong | Zhang, Yujie | Bi, Fang | Wu, Zhenhai | Liu, Yuhong | Zhang, Hao | Gao, Rui | Xue, Likun | Zhang, Qingzhu | Chen, Yizhen | Chai, Fahe | Wang, Wenxing
Ground-level ozone (O₃) has become the principal air pollutant in Beijing during recent summers. In this context, an investigation of ambient concentrations and variation characteristics of O₃ and its precursors in May and June from 2014 to 2017 in a typical urban area of Beijing was carried out, and the formation sensitivity and different causes of heavy O₃ pollution (HOP, daily maximum 8-h O₃ (MDA8h O₃)>124 ppbv) were analyzed. The results showed that the monthly assessment values of the O₃ concentrations (the 90ᵗʰ percentile MDA8h O₃ within one month) were highest in May or June from 2014 to 2017, and the values presented an overall increasing trend. During this period, the number of O₃ pollution days (MDA8h O₃ > 75 ppbv) also showed an increasing trend. During the HOP episodes, the concentrations of volatile organic compounds (VOCs), nitrogen oxides (NOX), and carbon monoxide (CO) were higher than their respective mean values in May and June, and the meteorological conditions were more conducive to atmospheric photochemical reactions. The HOP episodes were mainly caused by local photochemical formation. From 2014 to 2017, O₃ formation during the HOP episodes shifted from VOC and NOX mixed-limited to VOC-limited conditions, and O₃ formation was most sensitive to anthropogenic VOCs. Six categories of VOC sources were identified, among which vehicular exhaust contributed the most to anthropogenic VOCs. The VOC concentrations and OFPs of anthropogenic sources have decreased significantly in recent years, indicating that VOC control measures have been effective in Beijing. Nevertheless, NOX concentrations did not show an evident decreasing trend in the same period. Therefore, more attention should be devoted to O₃ pollution control in May and June; control measure adjustments are needed according to the changes in O₃ precursors, and coordinated control of VOCs and NOX should be strengthened in long-term planning.
Show more [+] Less [-]Valorization of synthetic textile waste using CO2 as a raw material in the catalytic pyrolysis process Full text
2021
Kwon, Dohee | Yi, So-ra | Jung, Sungyup | Kwon, Eilhann E.
Since an invention of synthetic fibers (textiles), our life quality has been improved. However, the cumulative production and disposal of them have perceived as significant since they are not biodegradable and hard to be upcycled/recycled. From washing textiles, microplastics are released into the environment, which are regarded as emerging contaminants. As a means for source reduction of microplastics, this study proposed a rapid disposal platform for waste textiles (WTs), converting them into value-added products. To this end, catalytic pyrolysis of WT was studied. To offer more environmentally sound process, CO₂ was used as a raw material for WT pyrolysis. Thermal cracking of WT led to the production of syngas and CH₄ under the CO₂ environment. CO₂ resulted in additional CO production via gas phase reaction with volatile compounds evolved from pyrolysis of WT. To expedite the reaction kinetics for syngas formation, catalytic pyrolysis was done over Co-based catalyst. Comparing to non-catalytic pyrolysis, CO₂-assisted catalytic pyrolysis had 3- and 8-times higher production of H₂ and CO, respectively. This process also suppressed catalyst deactivation, converting more than 80 wt% of WT into syngas and CH₄. The more generation of CO from the use of CO₂ as a raw material offers an effective means to minimize the formations of harmful chemical species, such as benzene derivatives and polycyclic aromatic hydrocarbons.
Show more [+] Less [-]Dioxybenzone triggers enhanced estrogenic effect via metabolic activation: in silico, in vitro and in vivo investigation Full text
2021
Zhan, Tingjie | Zhang, Leili | Cui, Shixuan | Liu, Weiping | Zhou, Ruhong | Zhuang, Shulin
Dioxybenzone is widely used in cosmetics and personal care products and frequently detected in multiple environmental media and human samples. However, the current understanding of the metabolic susceptibility of dioxybenzone and the potential endocrine disruption through its metabolites in mimicking human estrogens remains largely unclear. Here we investigated the in vitro metabolism of dioxybenzone, detected the residue of metabolites in rats, and determined the estrogenic disrupting effects of these metabolites toward estrogen receptor α (ERα). In vitro metabolism revealed two major metabolites from dioxybenzone, i.e., M1 through the demethylation of methoxy moiety and M2 through hydroxylation of aromatic carbon. M1 and M2 were both rapidly detected in rat plasma upon exposure to dioxybenzone, which were then distributed into organs of rats in the order of livers > kidneys > uteri > ovaries. The 100 ns molecular dynamics simulation revealed that M1 and M2 formed hydrogen bond to residue Leu387 and Glu353, respectively, on ERα ligand binding domain, leading to a reduced binding free energy. M1 and M2 also significantly induced estrogenic effect in comparison to dioxybenzone as validated by the recombinant ERα yeast two-hybrid assay and uterotrophic assay. Overall, our study revealed the potential of metabolic activation of dioxybenzone to induce estrogenic disrupting effects, suggesting the need for incorporating metabolic evaluation into the health risk assessment of benzophenones and their structurally similar analogs.
Show more [+] Less [-]Chronic cereulide exposure causes intestinal inflammation and gut microbiota dysbiosis in mice Full text
2021
Lin, Ruqin | Li, Danyang | Xu, Yangyang | Wei, Mengyao | Chen, Qingmei | Deng, Yiqun | Wen, Jikai
Known as a cause of food poisoning, Bacillus cereus (B. cereus) is widespread in nature. Cereulide, the heat-stable and acid-resistant emetic toxin which is produced by some B. cereus strains, is often associated with foodborne outbreaks, and causes acute emetic toxicity at high dosage exposure. However, the toxicological effect and underlying mechanism caused by chronic low-dose cereulide exposure require to be further addressed. In the study, based on mouse model, cereulide exposure (50 μg/kg body weight) for 28 days induced intestinal inflammation, gut microbiota dysbiosis and food intake reduction. According to the cell models, low dose cereulide exposure disrupted the intestinal barrier function and caused intestinal inflammation, which were resulted from endoplasmic reticulum (ER) stress IRE1/XBP1/CHOP pathway activation to induce cell apoptosis and inflammatory cytokines production. For gut microbiota, cereulide decreased the abundances of Lactobacillus and Oscillospira. Furthermore, cereulide disordered the metabolisms of gut microbiota, which exhibited the inhibitions of butyrate and tryptophan. Interestingly, cereulide exposure also inhibited the tryptophan hydroxylase to produce the serotonin in the gut and brain, which might lead to depression-like food intake reduction. Butyrate supplementation (100 mg/kg body weight) significantly reduced intestinal inflammation and serotonin biosynthesis suppression caused by cereulide in mice. In conclusion, chronic cereulide exposure induced ER stress to cause intestinal inflammation, gut microbiota dysbiosis and serotonin biosynthesis suppression. IRE1 could be the therapeutic target and butyrate supplementation is the potential prevention strategy.
Show more [+] Less [-]Shedding light on toxicity of SARS-CoV-2 peptides in aquatic biota: A study involving neotropical mosquito larvae (Diptera: Culicidae) Full text
2021
Mendonça-Gomes, Juliana Moreira | Charlie-Silva, Ives | Guimarães, Abraão Tiago Batista | Estrela, Fernanda Neves | Calmon, Marilia Freitas | Miceli, Rafael Nava | Sanches, Paulo R.S. | Bittar, Cíntia | Rahal, Paula | Cilli, Eduardo M. | Ahmed, Mohamed Ahmed Ibrahim | Vogel, Christoph F.A. | Malafaia, Guilherme
Knowledge about how the COVID-19 pandemic can affect aquatic wildlife is still extremely limited, and no effect of SARS-CoV-2 or its structural constituents on invertebrate models has been reported so far. Thus, we investigated the presence of the 2019-new coronavirus in different urban wastewater samples and, later, evaluated the behavioral and biochemical effects of the exposure of Culex quinquefasciatus larvae to two SARS-CoV-2 spike protein peptides (PSPD-2002 and PSPD-2003) synthesized in our laboratory. Initially, our results show the contamination of wastewater by the new coronavirus, via RT-qPCR on the viral N1 gene. On the other hand, our study shows that short-term exposure (48 h) to a low concentration (40 μg/L) of the synthesized peptides induced changes in the locomotor and the olfactory-driven behavior of the C. quinquefascitus larvae, which were associated with increased production of ROS and AChE activity (cholinesterase effect). To our knowledge, this is the first study that reports the indirect effects of the COVID-19 pandemic on the larval phase of a freshwater invertebrate species. The results raise concerns at the ecological level where the observed biological effects may lead to drastic consequences.
Show more [+] Less [-]Establishment and verification of anthropogenic volatile organic compound emission inventory in a typical coal resource-based city Full text
2021
Niu, Yueyuan | Yan, Yulong | Li, Jing | Liu, Peng | Liu, Zhuocheng | Hu, Dongmei | Peng, Lin | Wu, Jing
A few studies on volatile organic compound (VOC) emission inventories in coal resource-based cities have been reported, and previous emission inventories lacked verification. Herein, using Yangquan as a case study, emission factor (EF) method and “(tracer ratio) TR - positive matrix factorization (PMF)” combined method based on atmospheric data were used to establish and verify the VOC emission inventory in coal resource-based cities, respectively. The total VOC emissions in Yangquan were 9283.2 t [-40.0%, 62.1%] in 2018, with industrial processes being the major contributors. Alkanes (35.8%), aromatics (25.0%), and alkenes (19.8%) were the main compounds in the emission inventory. The verification results for both species emission and source structure were in agreement, indicating the accuracy of VOC emission inventory based on EF method to a certain extent. However, for some species (ethane, propane, benzene, and acetylene), the EF method indicated emissions lower than those obtained from the TR results. Furthermore, the summer-time emission contribution from fossil fuel combustion indicated by the EF method (23.4%) was lower than that obtained from the PMF results (38.4%). Overall, these discrepancies could be attributed to the absence of a coal gangue source in the EF method. The verification results determined the accuracy of the VOC emission inventory and identified existing problems in the estimation of the VOC emission inventory in coal resource-based cities. In particular, not accounting for the coal gangue emissions may result in an underestimation of VOC emissions in coal resource-based cities. Thus, coal gangue emissions should be considered in future research.
Show more [+] Less [-]Assessing the health impacts attributable to PM2.5 and ozone pollution in 338 Chinese cities from 2015 to 2020 Full text
2021
Guan, Yang | Xiao, Yang | Wang, Yameng | Zhang, Nannan | Chu, Chengjun
China has effectively reduced the fine particulate (PM₂.₅) pollution from 2015 to 2020. Ozone pollution and related health impacts have become severe contemporaneously. The coordinated control of PM₂.₅ and ozone is becoming a new issue for China's air pollution control. This study quantitatively assessed the health impacts attributed to PM₂.₅ and ozone pollution in 338 Chinese cities from 2015 to 2020 and estimated the possible health benefits from achieving dual concentration targets during 2021–2025. Results show PM₂.₅ caused a total health impact of 2.45 × 10⁷ disability-adjusted life years (DALYs) in 2020. All-cause and respiratory ozone-related health impact in 2020 was 1.04 × 10⁷ DALYs and 1.56 × 10⁶ DALYs. Between 2015 and 2020, the PM₂.₅-related health impacts decreased by 14.97%, while those ozone-related increased by 94.61% and 96.54% for all-cause and respiratory. Cities in the North China Plain have suffered higher health impacts attributable to PM₂.₅ and ozone pollution, indicating that the two-pollutant coordinated control is primarily needed. By achieving aggressive concentration target (decreasing 10%) between 2020 and 2025, China will reduce the PM₂.₅-related health impacts in 338 cities by 1.56 × 10⁶ DALYs (improving 6.37%). By achieving general target (decreasing 10% or within the Interim target-1 of World Health Organization), the PM₂.₅-related health benefit will be 7.98 × 10⁵ DALYs (improving 3.25%). The deteriorating ozone health risks will also be improved. Controlling air pollution in large cities and regional center cities can achieve remarkable health benefits. Due to the inter-region, inter-province, and inter-city difference of health impacts, targeted and differentiated pollution prevention and control need to be implemented.
Show more [+] Less [-]