Refine search
Results 841-850 of 8,010
Assessing the health impacts attributable to PM2.5 and ozone pollution in 338 Chinese cities from 2015 to 2020 Full text
2021
Guan, Yang | Xiao, Yang | Wang, Yameng | Zhang, Nannan | Chu, Chengjun
China has effectively reduced the fine particulate (PM₂.₅) pollution from 2015 to 2020. Ozone pollution and related health impacts have become severe contemporaneously. The coordinated control of PM₂.₅ and ozone is becoming a new issue for China's air pollution control. This study quantitatively assessed the health impacts attributed to PM₂.₅ and ozone pollution in 338 Chinese cities from 2015 to 2020 and estimated the possible health benefits from achieving dual concentration targets during 2021–2025. Results show PM₂.₅ caused a total health impact of 2.45 × 10⁷ disability-adjusted life years (DALYs) in 2020. All-cause and respiratory ozone-related health impact in 2020 was 1.04 × 10⁷ DALYs and 1.56 × 10⁶ DALYs. Between 2015 and 2020, the PM₂.₅-related health impacts decreased by 14.97%, while those ozone-related increased by 94.61% and 96.54% for all-cause and respiratory. Cities in the North China Plain have suffered higher health impacts attributable to PM₂.₅ and ozone pollution, indicating that the two-pollutant coordinated control is primarily needed. By achieving aggressive concentration target (decreasing 10%) between 2020 and 2025, China will reduce the PM₂.₅-related health impacts in 338 cities by 1.56 × 10⁶ DALYs (improving 6.37%). By achieving general target (decreasing 10% or within the Interim target-1 of World Health Organization), the PM₂.₅-related health benefit will be 7.98 × 10⁵ DALYs (improving 3.25%). The deteriorating ozone health risks will also be improved. Controlling air pollution in large cities and regional center cities can achieve remarkable health benefits. Due to the inter-region, inter-province, and inter-city difference of health impacts, targeted and differentiated pollution prevention and control need to be implemented.
Show more [+] Less [-]Improving denitrification efficiency in constructed wetlands integrated with immobilized bacteria under high saline conditions Full text
2021
Wang, Xinyi | Zhu, Hui | Yan, Baixing | Shutes, B. (Brian) | Bañuelos, Gary | Wen, Huiyang | Cheng, Rui
Constructed wetlands (CWs) inoculated with exogenous microbes have great potential for removing pollutants in adverse environments. The rapid loss of functional bacteria and the high cost of repeated additions of inoculum, however, limit the practical application of this technology. In this study, C–F2 immobilized bacteria (i.e., immobilized salt-tolerant bacterium Alishewanella sp. F2 incorporated with a carbon source) were developed and utilized in CWs for solving the above problems. A 60-day experiment demonstrated that bioaugmented CWs (Bio-CWs) with the addition of C–F2 immobilized bacteria into the bottom gravel layer of CW microcosms (B-CF2 treatment) exhibited high nitrogen removal efficiency under a saline condition (electrical conductivity of 15 mS/cm). We measured mean nitrate nitrogen (NO₃⁻-N) and total nitrogen (TN) removal percentages of 97.8% and 88.1%, respectively, which were significantly (p < 0.05) higher than those in Bio-CWs with microbial inoculum (MI-F2 treatment, 63.5% and 78.2%) and unbioaugmented CWs (CK, 48.7% and 67.2%). The TN content of the entire plant was significantly (p < 0.05) increased in B-CF2 (636.06 mg/microcosm) compared with CK (372.06 mg/microcosm). The relative abundances of the genera Alishewanella (i.e., the exogenous bacterium, 5.5%), Clostridium-XlVa (8.8%) and Bacteroides (21.1%) in B-CF2 were significantly (p < 0.05) higher than in MI-F2 and CK, which improved the denitrification capacity of CWs. Overall, a high denitrification efficiency and durability were achieved in the newly developed Bio-CWs (i.e., B-CF2 treatment) with immobilized bacteria under saline conditions, which provides an alternative technology for the rapid removal of nitrogen from saline wastewater.
Show more [+] Less [-]Assessment and statistical modelling of airborne microorganisms in Madrid Full text
2021
Cordero, José María | Núñez, Andrés | García, Ana M. | Borge, Rafael
The limited evidence available suggests that the interaction between chemical pollutants and biological particles may intensify respiratory diseases caused by air pollution in urban areas. Unlike air pollutants, which are routinely measured, records of biotic component are scarce. While pollen concentrations are daily surveyed in most cities, data related to airborne bacteria or fungi are not usually available. This work presents the first effort to understand atmospheric pollution integrating both biotic and abiotic agents, trying to identify relationships among the Proteobacteria, Actinobacteria and Ascomycota phyla with palynological, meteorological and air quality variables using all biological historical records available in the Madrid Greater Region. The tools employed involve statistical hypothesis contrast tests such as Kruskal-Wallis and machine learning algorithms. A cluster analysis was performed to analyse which abiotic variables were able to separate the biotic variables into groups. Significant relationships were found for temperature and relative humidity. In addition, the relative abundance of the biological phyla studied was affected by PM₁₀ and O₃ ambient concentration. Preliminary Generalized Additive Models (GAMs) to predict the biotic relative abundances based on these atmospheric variables were developed. The results (r = 0.70) were acceptable taking into account the scarcity of the available data. These models can be used as an indication of the biotic composition when no measurements are available. They are also a good starting point to continue working in the development of more accurate models and to investigate causal relationships.
Show more [+] Less [-]Quantifying and predicting ecological and human health risks for binary heavy metal pollution accidents at the watershed scale using Bayesian Networks Full text
2021
Liu, Jing | Liu, Renzhi | Yang, Zhifeng | Kuikka, Sakari
The accidental leakage of industrial wastewater containing heavy metals from enterprises poses great risks to resident health, social instability, and ecological safety. During 2005–2018, heavy metal mixed pollution accidents comprised approximately 33% of the major environmental ones in China. A Bayesian Networks-based probabilistic approach is developed to quantitatively predict ecological and human health risks for heavy metal mixed pollution accidents at the watershed scale. To estimate the probability distributions of joint ecological exposure once a heavy metal mixed pollution accident occurs, a Copula-based joint exposure calculation method, comprised of a hydro-dynamic model, emergent heavy metal pollution transport model, and the Copula functions, is embedded. This approach was applied to the risk assessment of acute Cr⁶⁺-Hg²⁺ mixed pollution accidents at 76 electroplating enterprises in 24 risk sub-watersheds of the Dongjiang River downstream watershed. The results indicated that nine sub-watersheds created high ecological risks, while only five created high human health risks. In addition, the ecological and human health risk levels were highest in the tributary (the Xizhijiang River), while the ecological risk was more critical in the river network, and the human health risk was more serious in the mainstream of the Dongjiang River. The quantitative risk assessment provides a substantial support to incident prevention and control, risk management, as well as regulatory decision making for electroplating enterprises.
Show more [+] Less [-]First evidence of the protective role of melatonin in counteracting cadmium toxicity in the rat ovary via the mTOR pathway Full text
2021
Kechiche, Safa | Venditti, Massimo | Knani, Latifa | Jabłońska, Karolina | Dziegiel, Piotr | Messaoudi, Imed | Reiter, Russel J. | Minucci, Sergio
Herein, the first evidence of the ability of melatonin (MLT) to counteract cadmium (Cd) toxic effects on the rat ovary is reported. Cd treatment, enhancing oxidative stress, provoked clear morphological, histological and biomolecular alterations, i.e. in the estrous cycle duration, in the ovarian and serum E₂ concentration other than in the steroidogenic and folliculogenic genes expression. Results demonstrated that the use of MLT, in combination with Cd, avoided the changes, strongly suggesting that it is an efficient antioxidant for preventing oxidative stress in the rat ovary. Moreover, to explore the underlying mechanism involved, at molecular level, in the effects of Cd-MLT interaction, the study focused on the mTOR and ERK1/2 pathways. Interestingly, data showed that Cd influenced the phosphorylation status of mTOR, of its downstream effectors and of ERK1/2, inducing autophagy and apoptosis, while cotreatment with MLT nullified these changes. This work highlights the beneficial role exerted by MLT in preventing Cd-induced toxicity in the rat ovary, encouraging further studies to confirm its action on human ovarian health with the aim to use this indolamine to ameliorate oocyte quality in women with fertility disorders.
Show more [+] Less [-]Spatial distribution, source identification, and anthropogenic effects of brominated flame retardants in nationwide soil collected from South Korea Full text
2021
Jeon, Jin-Woo | Kim, Chul-Su | Kim, Ho-Joong | Lee, Chang-Ho | Hwang, Seung-Man | Choi, Sung-Deuk
Soil samples were collected at 61 sites of the national monitoring network for persistent organic pollutants (POPs) in South Korea. The target compounds were brominated flame retardants (BFRs), including polybrominated diphenyl ethers (PBDEs), polybrominated biphenyls (PBBs), hexabromocyclododecanes (HBCDDs), and tetrabromobisphenol A (TBBPA). The mean concentrations of Σ₂₇ PBDEs, Σ₃ HBCDDs, and TBBPA in soil were 222, 17.2, and 4.4 ng/g, respectively, but PBBs were not detected. Industrial sites had statistically higher BFR concentrations than suburban sites but no significant difference compared with urban sites. The commercial deca-BDE mixtures were the most likely source of PBDE contamination in the soil samples, with the minor influence of commercial penta-BDE and octa-BDE mixtures. The profiles of HBCDDs in most soil samples differed from those in the powder types of technical HBCDD mixtures, indicating that they are affected by the HBCDDs contained in commercial products and the conversion of HBCDD diastereoisomers (γ-HBCDD to α-HBCDD) in the environment. The concentrations of Σ₂₇ PBDEs, Σ₃ HBCDDs, and TBBPA were significantly correlated with population density, gross domestic product, and the number of companies (p < 0.01), indicating a direct impact of anthropogenic activities. Significant correlations among BFRs were determined (0.63 < r < 0.74, p < 0.01), suggesting that these pollutants had similar sources. Relatively good correlations (0.44 < r < 0.98, p < 0.01) between BDE-209 and other light BDEs (except for BDE-71, -77, −126, −156, and −205) might result from the degradation of heavy BDEs under anaerobic and natural sunlight conditions. To the best of our knowledge, this study provides the most comprehensive soil monitoring data for various BFRs in South Korea. Furthermore, it is the first report on soil contamination by deca-BDE, HBCDDs, and TBBPA in South Korea.
Show more [+] Less [-]Third-hand smoke exposure is associated with abnormal serum melatonin level via hypomethylation of CYP1A2 promoter: Evidence from human and animal studies Full text
2021
Jiang, Wenbo | Wu, Huanyu | Yu, Xinyang | Wang, Yu | Gu, Wenbo | Wei, Wei | Li, Bai | Jiang, XiTao | Wang, Yue | Hou, Wanying | Dong, Qiuying | Yan, Xuemin | Li, Ying | Sun, Changhao | Han, Tianshu
This study aimed to examine whether and how third-hand smoke (THS) exposure would influence serum melatonin level. 1083 participants with or without exposure to THS were enrolled. Serum ROS, SOD, GSH-Px, and melatonin were measured by ELISA. Methylation microarrays detection and WGCNA were performed to identify hub methylated-sites. The methylation levels of hub-sites were validated in addtional samples. Moreover, mice were exposed to THS for 6 months mimicking exposure of human and the serum, liver, and pineal were collected. Oxidative stress-related indicators in serum, pineal, and liver were measured by ELISA. The expressions of mRNA and protein and methylation levels of hub-gene discovered in human data were further explored by RT-PCR, western-blot, and TBS. The results showed the participants exposed to THS had lower melatonin-level. 820 differentially methylated sites associated with THS were identified. And the hub-site located on the CYP1A2 promoter was identified, which mediated the association between THS and decreased melatonin-level. Decreased peak of serum melatonin, increased ROS and reduced SOD and GSH-Px in pineal and liver, and elevated CYP1A2 expression in liver was also found in the THS-exposed mice. Hypo-methylation of 7 CPG sites on the CYP1A2 promoter was identified, which accelerated the catabolism of melatonin. Overall, THS exposure is associated with abnormal melatonin catabolism through hypo-methylation of CYP1A2-promoter.
Show more [+] Less [-]Influence of secondary metabolites on surface chemistry and metal adsorption of a devitalized lichen biomonitor Full text
2021
Fortuna, Lorenzo | González, Aridane G. | Tretiach, Mauro | Pokrovsky, Oleg S.
Despite the broad use of lichens as biomonitors of airborne trace elements, the surface chemistry and metal adsorption parameters of these organisms are still poorly known. The current investigation is aimed at (i) quantifying the acid-base surface properties and the first-order physical-chemical parameters of Cu²⁺ and Zn²⁺ adsorption of devitalized Pseudevernia furfuracea, a lichen commonly used in biomonitoring of airborne trace elements, and (ii) comparing the results with those available for moss biomonitors. Equilibrium constants and metal-binding site concentrations were calculated with a thermodynamic model by taking into account the presence/absence of ancillary extracellular cell wall compounds, namely melanin and acetone-soluble lichen substances. An acid–base titration experiment performed in the pH range of 3–10 showed that melanised and non-melanised P. furfuracea samples have lower pHPZC (3.53–3.99) and higher metal-binding site concentrations (0.96–1.20 mmol g⁻¹) compared to that of the mosses investigated so far at the same experimental conditions. Melanin biosynthesis increased the content of carboxyl and phosphoryl groups and reduces that of amine/polyphenols. Cu²⁺ and Zn²⁺ adsorption was unaffected by the degree of melanisation while the removal of extracellular lichen substances slightly decreased Zn²⁺ adsorption. Although Cu²⁺ and Zn²⁺ adsorption parameters related to P. furfuracea surfaces were 3 times lower than in the mosses, lichen samples adsorbed the same amount of Cu²⁺ and 30% more Zn²⁺. The present study contributes in understanding the role of ancillary cell wall compounds in Cu²⁺ and Zn²⁺ adsorption in a model lichen. It also provides a first comparison between the surface physico-chemical characteristics of lichens and mosses frequently used as biomonitors of trace elements.
Show more [+] Less [-]Rice cultivars significantly mitigate cadmium accumulation in grains and its bioaccessibility and toxicity in human HL-7702 cells Full text
2021
Tefera, Wolde | Tang, Lin | Lu, Lingli | Xie, Ruohan | Seifu, Weldemariam | Tian, Shengke
Excessive Cd accumulation in cereals, especially in high-consumption staple crops, such as rice, is of major concern. Therefore, elucidation of cultivar-specific variation in rice grain Cd bioaccessibility and toxicity in humans would help the development of remedial strategies for Cd accumulation and toxicity. The present study combined an in vitro gastrointestinal digestion model with a human HL-7702 cell and assessed Cd bioaccessibility and toxicity to humans from the grains of 30 rice cultivars of different types harvested from Cd-contaminated paddy soil. The mean grain Cd content of cultivars within the type exceeded acceptable national standards. Cadmium bioaccessibility was high in all grains (9.08–23.6%) except the low accumulator (LA) rice cultivar (7.93%). The mean estimated daily intake of Cd via the cultivars (except LA) exceeded the FAO/WHO permissible limit based not only on the total grain Cd concentration but also on bioaccessible Cd concentration. A dose-proportional correlation between the in vitro bioaccessible and total grain Cd concentrations was observed, suggesting that Cd bioaccessibility accurately reflects the transfer of Cd from rice grain to humans. Toxicity assay results demonstrated that Cd from rice grains could commence oxidative stress and injury in HL-7702 cells, except the LA rice, which did not exhibit significant alteration in HL-7702 cells owing to its low Cd concentration. These results provide primary evidence to suggest that the cultivation of the LA rice cultivar is an effective agronomic approach to avert Cd entry into the food chain and alleviate Cd toxicity in humans.
Show more [+] Less [-]Intraspecific variability of responses to combined metal contamination and immune challenge among wild fish populations Full text
2021
Petitjean, Quentin | Jacquin, Lisa | Riem, Louna | Pitout, Mathilde | Perrault, Annie | Cousseau, Myriam | Laffaille, Pascal | Jean, Séverine
Wild organisms are increasingly exposed to multiple anthropogenic and natural stressors that can interact in complex ways and lead to unexpected effects. In aquatic ecosystems, contamination by trace metals has deleterious effects on fish health and commonly co-occurs with pathogens, which affect similar physiological and behavioral traits. However, the combined effects of metal contamination and parasitism are still poorly known. In addition, the sensitivity to multiple stressors could be highly variable among different fish populations depending on their evolutionary history, but this intraspecific variability is rarely taken into account in existing ecotoxicological studies. Here, we investigated i) the interactive effects of metal contamination (i.e., realistic mixture of Cd, Cu and Zn) and immune challenge mimicking a parasite attack on fish health across biological levels. In addition, we compared ii) the physiological and behavioral responses among five populations of gudgeon fish (Gobio occitaniae) having evolved along a gradient of metal contamination. Results show that single stressors exposure resulted in an increase of immune defenses and oxidative stress at the expense of body mass (contamination) or fish swimming activity (immune challenge). Multiple stressors had fewer interactive effects than expected, especially on physiological traits, but mainly resulted in antagonistic effects on fish swimming activity. Indeed, the immune challenge modified or inhibited the effects of contamination on fish behavior in most populations, suggesting that multiple stressors could reduce behavioral plasticity. Interestingly, the effects of stressors were highly variable among populations, with lower deleterious effects of metal contamination in populations from highly contaminated environments, although the underlying evolutionary mechanisms remain to be investigated. This study highlights the importance of considering multiple stressors effects and intraspecific variability of sensitivity to refine our ability to predict the effects of environmental contaminants on aquatic wildlife.
Show more [+] Less [-]