Refine search
Results 851-860 of 5,138
Benzyldimethyldodecyl ammonium chloride shifts the proliferation of functional genes and microbial community in natural water from eutrophic lake
2018
Yang, Yuyi | Wang, Weibo
Benzylalkyldimethylethyl ammonium compounds are pervasive in natural environments and toxic at high concentrations. The changes in functional genes and microbial diversity in eutrophic lake samples exposed to benzyldimethyldodecyl ammonium chloride (BAC) were assessed. BAC exerted negative effects on bacteria abundance, particularly at concentrations of 100 μg L−1 and higher. A significant increase in the number of the quaternary ammonium compound-resistant gene qacA/B was recorded within the 10 μg L−1 treatment after the first day of exposure. Not all antibiotic resistance genes increased in abundance as the concentrations of BAC increased; rather, gene abundances were dependent on the gene type, concentrations of BAC, and contact time. The nitrogen fixation-related gene nifH and ammonia monooxygenase gene amoA were inhibited by high concentrations of BAC after the first day, whereas an increase of the nitrite reductase gene nirK was stimulated by exposure. Microbial communities within higher treatment levels (1000 and 10 000 μg L−1) exhibited significantly different community composition compared to other treatment levels and the control. Selective enrichment of Rheinheimera, Pseudomonas, and Vogesella were found in the higher treatment levels, suggesting that these bacteria have some resistance or degradation capacity to BAC. Genes related with RNA processing and modification, transcription, lipid transport and metabolism, amino acid transport and metabolism, and cell motility of microbial community function were involved in the process exposed to the BAC stress.
Show more [+] Less [-]Bioaccumulation and human health risks of OCPs and PCBs in freshwater products of Northeast China
2018
Fu, Lei | Lu, Xianbo | Tan, Jun | Zhang, Haijun | Zhang, Yichi | Wang, Shuqiu | Chen, Jiping
The levels and spatial distribution of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in freshwater products from Northeast China were investigated by gas chromatography coupled to isotope dilution high-resolution mass spectrometry. All samples were on-spot sampled from main production regions of freshwater products in Northeast China, and these samples were used to systematically assess the potential health risks of OCPs and PCBs associated with consumption of these fishery products. Dichlorodiphenyltrichloroethanes (DDTs), hexachlorocyclohexane (HCHs), hexachlorobenzene (HCB) and PCBs were the major pollutants with 100% detection rates, and their levels ranged from 0.086 to 58, 0.038–3.3, 0.093–4.5 and 0.032–1.4 ng g⁻¹ wet weight, respectively. The estimated dietary intakes of these contaminants were all below their corresponding acceptable daily intakes. Significant regional differences in the levels of OCPs and PCBs (P ≦ 0.001) were found in samples from Liaoning and Inner Mongolia. The results showed that the concentrations of targeted contaminants in aquatic products had species-specific characteristics, and the levels of targeted pollutants in Oncorhynchus mykiss and Eriocheir sienesis were significantly higher than those in other aquatic product species. Advisories on ten species of aquatic products suggested that consumption of Eriocheir sinensis, Oncorhynchus mykiss and Cyprinus carpio at a rate exceeding 15 meals per month would pose a cancer risk. A health risk assessment indicated that exposure to these pollutants through freshwater products consumption would cause a non-ignorable potential carcinogenic risk to humans.
Show more [+] Less [-]A new exploration of health risk assessment quantification from sources of soil heavy metals under different land use
2018
Huang, Jinhui | Guo, Shiting | Zeng, Guang-ming | Li, Fei | Ku, Yenlin | Shi, Yahui | Shi, Lixiu | Liu, Wenchu | Peng, Shuying
Heavy metals in the topsoil affected adversely human health through inhalation, ingestion and dermal contact. The health risk assessment, which are quantified from soil heavy metals sources under different land use, can provide an important reference basis for preventing and controlling the soil heavy metals pollution from the source. In this study, simple statistical analysis and Positive Matrix Factorization (PMF) were used to quantify sources of soil heavy metals; then a health risk assessment (HRA) model combined with PMF was proposed to assess quantificationally the human health risk (including non-cancer risk and cancer risk) from sources under residential-land, forest-land and farm land. Xiang River New District (XRNQ) was chosen as the example and four significant sources were quantitatively analyzed in the study. For cancer risk, industrial discharge was the largest source and accounted for about 69.6%, 69.7%, 56.5% for adults under residential-land, forest-land and farm-land, respectively. For non-cancer risk, industrial discharge was still the largest significant source under residential-land and forest-land and accounted for about 41.7%, 39.2% for adult, respectively; while agricultural activities accounted for about 51.8% for adult under farm-land. The risk trend of children, including cancer risk and non-cancer risk, was similar with adults. However, the non-cancer risk areas of adults affected by industrial discharge was higher than that of children, while the cancer risk areas of adults were on the contrary. The new exploration was useful to assess health risk quantification from sources under different land use, thus providing certain reference in preventing and controlling the pollution from the source for local authorities effectively.
Show more [+] Less [-]Wet deposition of sulfur and nitrogen in Jiuzhaigou National Nature Reserve, Sichuan, China during 2015–2016: Possible effects from regional emission reduction and local tourist activities
2018
Qiao, Xue | Du, Jie | Kota, Sri Harsha | Ying, Qi | Xiao, Weiyang | Tang, Ya
In order to understand the impacts of regional emission changes and local tourism on sulfur and nitrogen wet deposition in Jiuzhaigou National Nature Reserve of southwestern China, wet deposition was monitored at a background site (Rize) and a tourist-affected site (PE: park entrance) in the reserve during 2015–2016. The observation data were compared between Rize and PE and between 2010–2011 and 2015–2016 monitoring campaigns. Also, the observation data were used in the Positive Matrix Factorization (PMF) model to identify the major sources of sulfur and nitrogen wet deposition. The results show that although local tourism emissions had considerable contributions to NH₄⁺, NO₂⁻, NO₃⁻, and SO₄²⁻ concentrations in wet deposition (p < 0.05), most of the annual Volume Weighted Mean (VWM) concentrations of these four ions were likely from emissions outside Jiuzhaigou. Annual wet deposition fluxes of the four ions were also affected more by precipitation and regional emissions than by local emissions. Although annual precipitation was higher at Rize (818 mm) during 2015–2016 than at another background site near Long Lake (LL: 752 mm) during 2010–2011, the annual concentrations and fluxes of SO₄²⁻ and NO₃⁻ wet deposition decreased by 77% and 74% for SO₄²⁻ and by 12% and 19% for NO₃⁻, respectively, most likely due to regional emission reductions. Similar large reductions in SO₄²⁻ and NO₃⁻ concentrations have been also found in some other sites in southwestern China. In contrast, the annual concentration and flux of NH₄⁺ wet deposition at Rize during 2015–2016 were 1.4 and 1.2 times of that measured at LL during 2010–2011, respectively. The results of source apportionment analysis and tour bus emission estimates suggest that elevated NH₄⁺ wet deposition was possibly related to NH₃ emissions from local tour buses, but additional studies on NH₃ emissions from tour buses in the reserve are needed to confirm this.
Show more [+] Less [-]Influence of urban surface roughness on build-up and wash-off dynamics of road-deposited sediment
2018
Zhao, Hongtao | Jiang, Qian | Ma, Yukun | Xie, Wenxia | Li, Xuyong | Yin, Chengqing
An in-depth understanding of the impacts of surface roughness on road-deposited sediment (RDS) build-up and wash-off is essential for the estimation of surface runoff loads and design of RDS control measures. In this study, RDS build-up and wash-off dynamic processes were investigated on paired asphalt and concrete road surfaces with 35 days of continuous sampling during different natural rainfall events. Our results showed that RDS build-up loads and grain size composition were affected by surface roughness, while the impact of surface roughness on the length of the dynamic equilibrium period was not notable. Selective wash-off of RDS with different effects according to grain size are more likely to occur on asphalt road surfaces during rainfall-runoff, but the RDS wash-off percentage is not affected by surface roughness during snowmelt-runoff. Both total apparent depression depth and micro-depression structures influence RDS build-up and wash-off dynamics. These results imply that surface roughness has combined effects on RDS build-up and wash-off dynamics during the generation and control of urban diffuse pollution.
Show more [+] Less [-]Reduction in soil N2O emissions by pH manipulation and enhanced nosZ gene transcription under different water regimes
2018
Shaaban, Muhammad | Wu, Yupeng | Khalid, Muhammad Salman | Peng, Qi-an | Xu, Xiangyu | Wu, Lei | Younas, Aneela | Bashir, Saqib | Mo, Yongliang | Lin, Shan | Zafar-ul-Hye, Muhammad | Abid, Mohamed | Hu, Ronggui
Several studies have been carried out to examine nitrous oxide (N₂O) emissions from agricultural soils in the past. However, the emissions of N₂O particularly during amelioration of acidic soils have been rarely studied. We carried out the present study using a rice-rapeseed rotation soil (pH 5.44) that was amended with dolomite (0, 1 and 2 g kg⁻¹ soil) under 60% water filled pore space (WFPS) and flooding. N₂O emissions and several soil properties (pH, NH₄⁺N, NO₃⁻-N, and nosZ gene transcripts) were measured throughout the study. The increase in soil pH with dolomite application triggered soil N transformation and transcripts of nosZ gene controlling N₂O emissions under both water regimes (60% WFPS and flooding). The 60% WFPS produced higher soil N₂O emissions than that of flooding, and dolomite largely reduced N₂O emissions at higher pH under both water regimes through enhanced transcription of nosZ gene. The results suggest that ameliorating soil acidity with dolomite can substantially mitigate N₂O emissions through promoting nosZ gene transcription.
Show more [+] Less [-]Public perception and attitude towards chemical industry park in Dalian, Bohai Rim
2018
He, Guizhen | Chen, Chunci | Zhang, Lei | Lü, Yonglong
Recent decade has witnessed accelerating expansion of chemical industry and increasing conflicts between the local citizens, governmental authorities and project developers, especially in some coastal and port cities in China. Development and transformation of chemical industrial parks has been adopted as a national initiative recently. However, there is a paucity of research examining public perspectives on chemical industrial parks and their risks. Aiming to understand public perception, attitude, and response and the factors underlying the support/acceptance of chemical industry park, this paper investigated 418 residents neighboring to two chemical industrial parks, Dalian in Bohai Rim through face-to-face questionnaire survey. The results showed the knowledge of the respondents on the chemical industrial parks development was very limited. The respondents had complex perceptions on the environmental impacts, risks control, social-economic benefits, and problem awareness. The current levels of information disclosure and public participation were very low. The central governmental official (44.3%) was the most trustworthy group by the respondents. Only 5.5% and 23.2% of the respondents supported the construction of a new CIP nearby and far away their homes, whilst 13% thought new CIP project as acceptable. The spearman correlation analysis results showed a strong NIMBY effect (Not In My Backyard). Factor analysis results demonstrated five latent factors: knowledge, benefit, information, trust, and participation. Multiple linear regression analysis indicated how socio-demographic differences and five latent factors might impact on the support/acceptance of the chemical industrial parks. Education level, trust, information, and participation were significant predictors of public support/acceptance level. This study contributes to our limited knowledge and understanding of public sentiments to the chemical industry parks in China.
Show more [+] Less [-]Cadmium dynamics in soil pore water and uptake by rice: Influences of soil-applied selenite with different water managements
2018
Wan, Yanan | Camara, Aboubacar Younoussa | Yu, Yao | Wang, Qi | Guo, Tianliang | Zhu, Lina | Li, Huafen
Cadmium (Cd) in rice grains is a potential threat to human health. This study investigated the effects of selenite fertilisation (0 mg kg−1, 0.5 mg kg−1, and 1.0 mg kg−1) on soil solution Cd dynamics and rice uptake. Rice was grown in two Cd-contaminated soils in Jiangxi and Hunan Provinces under two different sets of conditions: aerobic and flooded. The experiments were conducted in pots. The plants were harvested at the seedling stage and at maturity to determine their Cd levels. Soil solutions were also extracted during the growing season to monitor Cd dynamics. The results showed that in the Jiangxi soil (pH 5.25), Cd concentrations in the soil solutions, seedlings, and mature rice plants were higher under aerobic than under flooded water management conditions. In the Hunan soil (pH 7.26), however, flooding decreased Cd levels in the rice seedlings but not in mature plants. Selenite additions to the Hunan soil decreased Cd concentrations in the soil solutions and in the mature rice plants. These effects were not observed for the solutions or the plants from Jiangxi soil amended with selenite. Relative to the control treatment, 0.5 mg kg−1 selenite decreased the rice grain Cd content by 45.2% and 67.7% under aerobic and flooding conditions, respectively. The results demonstrated that water management regimes affected rice Cd uptake more effectively in Jiangxi than in Hunan soil, whereas selenite addition was more effective in Hunan than in Jiangxi soil. Selenite addition was also more effective at reducing rice grain Cd levels when it was applied under flooding than under aerobic conditions.
Show more [+] Less [-]Air pollutant emissions and mitigation potential through the adoption of semi-coke coals and improved heating stoves: Field evaluation of a pilot intervention program in rural China
2018
Liu, Yafei | Zhang, You | Li, Chuang | Bai, Yun | Zhang, Daoming | Xue, Chunyu | Liu, Guangqing
Pollutant emissions from incomplete combustion of raw coal in low-efficiency residential heating stoves greatly contribute to winter haze in China. Semi-coke coals and improved heating stoves are expected to lower air pollutant emissions and are vigorously promoted by the Chinese government in many national and local plans. In this study, the thermal performance and air pollutant emissions from semi-coke combustion in improved heating stoves were measured in a pilot rural county and compared to the baseline of burning raw coal to quantify the mitigation potential of air pollutant emissions. A total of five stove-fuel combinations were tested, and 27 samples from 27 different volunteered households were obtained. The heating efficiency of improved stoves increased, but fuel consumption appeared higher with more useful energy output compared to traditional stoves. The emission factors of PM2.5, SO2, and CO2 of semi-coke burning in specified improved stoves were lower than the baseline of burning raw coal chunk, but no significant NOx and CO decreases were observed. The total amount of PM2.5 and SO2 emissions per household in one heating season was lower, but CO, CO2, and NOx increased when semi-coke coal and specified improved stoves were deployed. Most differences were not statistically significant due to the limited samples and large variation, indicating that further evaluation would be needed to make conclusions that could be considered for policy.
Show more [+] Less [-]Effects of imidacloprid on the ecology of sub-tropical freshwater microcosms
2018
Sumon, Kizar Ahmed | Ritika, Afifat Khanam | Peeters, Edwin T.H.M. | Rashid, Harunur | Bosma, Roel H. | Rahman, Md Shahidur | Fatema, Mst Kaniz | Van den Brink, Paul J.
The neonicotinoid insecticide imidacloprid is used in Bangladesh for a variety of crop protection purposes. Imidacloprid may contaminate aquatic ecosystems via spray drift, surface runoff and ground water leaching. The present study aimed at assessing the fate and effects of imidacloprid on structural (phytoplankton, zooplankton, macroinvertebrates and periphyton) and functional (organic matter decomposition) endpoints of freshwater, sub-tropical ecosystems in Bangladesh. Imidacloprid was applied weekly to 16 freshwater microcosms (PVC tanks containing 400 L de-chlorinated tap water) at nominal concentrations of 0, 30, 300, 3000 ng/L over a period of 4 weeks. Results indicated that imidacloprid concentrations from the microcosm water column declined rapidly. Univariate and multivariate analysis showed significant effects of imidacloprid on the zooplankton and macroinvertebrate community, some individual phytoplankton taxa, and water quality variables (i.e. DO, alkalinity, ammonia and nitrate), with Cloeon sp., Diaptomus sp. and Keratella sp. being the most affected species, i.e. showing lower abundance values in all treatments compared to the control. The observed high sensitivity of Cloeon sp. and Diaptomus sp. was confirmed by the results of single species tests. No significant effects were observed on the species composition of the phytoplankton, periphyton biomass and organic matter decomposition for any of the sampling days. Our study indicates that (sub-)tropical aquatic ecosystems can be much more sensitive to imidacloprid compared to temperate ones.
Show more [+] Less [-]