Refine search
Results 871-880 of 4,896
Effect of particulate organic matter fractions on the distribution of heavy metals with aided phytostabilization at a zinc smelting waste slag site
2019
Luo, Youfa | Wu, Yonggui | Shu, Jie | Wu, Zhixue
Particulate organic matter (POM) significantly affects the distribution of heavy metals in contaminated soil. However, the effect of POM on the fate of heavy metals during in situ-aided phytostabilization of waste slag is unclear. The objective of this study was to investigate the distributions of heavy metals such as Cu, Pb, Zn, and Cd in the POM fractions at a zinc smelting waste slag site under in situ-aided phytostabilization after five years. The results showed that the litters and residues of four plants―Arundo donax, Broussonetia papyrifera, Cryptomeria fortunei, and Robinia pseudoacacia―decomposed to form different POM size fractions. The percentage of the 0.05–0.25 mm POM size fraction was the highest, followed by the >1 mm and 0.5–1 mm POM size fractions, and that of the 0.25–0.5 mm POM size fraction was the lowest. The masses of POM derived from the four plants were in the following order: C. fortunei > B. papyrifera > A. donax > R. pseudoacacia. The contents, enrichment coefficients, and mass loads of heavy metals such as Cu, Pb, Zn, and Cd in the POM increased with decreasing POM size, and those in the 0.05–0.25 mm POM size fraction were the highest. The mass load of heavy metals in the POM occurred in the following order: Cu > Cd > Zn > Pb. The surfaces of the POM with coarser and smaller size fractions were smoother and rougher, respectively, and the smaller POM size fractions had larger specific surface areas. The main functional groups in the different POM size fractions were –COOH, –OH, CO, CC, C–H, Si–O, and –CH₃. The POM fractions played a significant role in determining the distribution of heavy metals in the revegetated waste slag. These findings have important implications for aided phytostabilization, which significantly influences the fate and speciation of heavy metals at the phytoremediation site.
Show more [+] Less [-]Household-based biodigesters promote reduction of enteric virus and bacteria in vulnerable and poverty rural area
2019
Célia da Silva Lanna, Maria | Viancelli, Aline | Michelon, Wiliam | Castro Carvalho, Sergio Vinícius | de Almeida dos Reis, Deyse | Fernandez de Salles, Luiz Antônio | Sant’Anna, Iago Hashimoto | Resende, Letícia Teresinha | de Souza Ferreira, Clovis | Aparecido das Chagas, Igor | Hernández, Marta | Treichel, Helen | Rodríguez-Lázaro, David | Fongaro, Gislaine
The present study evaluated the river water quality improvement by implementation of household-based biodigesters in vulnerability and poverty rural area, in Minas Gerais State-Brazil. For that, 78 household-based biodigesters were installed for domestic wastewater treatment. Wastewater was collected before and after treatment and the physicochemical parameters and pathogens removal (human adenovirus (HAdV), hepatitis A (HAV) virus, Salmonella sp. and Escherichia coli) were evaluated; Additionally, river water was sampled before and after the household-based biodigesters implementation, to verify the contamination reduction and the positive impact of domestic wastewater treatment on waterborne pathogen reduction, considering HAdV, HAV, Salmonella sp. and E. coli quantification. The applicability in real-scale of decentralized treatment systems using household-based biodigesters promoted reduction of 90, 99, 99.99 and 99.999% from HAV, Salmonella sp., E. coli and HAdV from domestic wastewater, respectively; The river water quality improvement before the wastewater treatment application was highlight in the present study, considering that the reduction of waterborne pathogens in this water in 90, 99.99 and 99.999% of E. coli, HAV and HAdV, respectively (Salmonella sp. was not detected in river water). In general, this is an important study for encouraging the decentralized sanitation in vulnerable and poverty area, as well in rural sites, considering the positive impact of this implementation on public health.
Show more [+] Less [-]Fiproles in urban surface runoff: Understanding sources and causes of contamination
2019
Cryder, Zachary | Greenberg, Les | Richards, Jaben | Wolf, Douglas | Luo, Yuzhou | Gan, Jay
Urban-use pesticides present a unique risk to non-target organisms in surface aquatic systems because impervious pavement facilitates runoff that may lead to serious contamination and ensuing aquatic toxicity. Fipronil is an insecticide used at high rates in urban environments, especially in regions such as California. This compound and its biologically active degradation products have been detected in urban runoff drainage and downstream surface water bodies at concentrations exceeding toxicity thresholds for sensitive aquatic invertebrates, necessitating a better understanding of the runoff sources and causes of this contamination at sites of application. In this study, we evaluated sorption of fipronil, fipronil desulfinyl, fipronil sulfide, and fipronil sulfone in urban dust, soil, and concrete, matrices commonly associated with the perimeter of a residential home. Samples were also collected from five single family homes treated with fipronil in Riverside, California, for five months to determine the occurrence of fipronil and its degradates in runoff water, urban dust, soil, and on concrete surfaces. Statistical analysis was performed to determine which urban matrices contributed more significantly to the contaminant levels in runoff water. Freundlich sorption coefficients for fipronil and its degradation products in dust were 3- to 9-fold greater than their values in soil. Fipronil and its degradates were detected in 100% of runoff samples and their presence was observed in dust, soil, and concrete wipe samples for 153 d after the treatment. Linear regression analysis showed that concrete surfaces were a primary source of all four compounds to runoff, and loose dust on concrete pavement also served as an important contributor. This study represents the first comprehensive investigation of the sources and causes for surface runoff contamination by fipronil and its degradation products. Findings highlight the importance to reduce fipronil residues on concrete surfaces through improved application methods and other mitigation practices.
Show more [+] Less [-]The role of turbulence in internal phosphorus release: Turbulence intensity matters
2019
Li, Hong | Yang, Guofeng | Ma, Jianrong | Wei, Yanyan | Kang, Li | He, Yixin | He, Qiang
Hydrodynamic fluctuations can trigger sediment suspension concomitantly with internal phosphorus release, while the interactive effect of turbulence mixing and sediment suspension on the regulation of phosphorus dynamics is in need of deep understanding. This study addressed the changes in total phosphorus (TP), phosphate (PO₄³⁻-P) and suspended sediment (SS) in the overlying water, and measured the profile of dissolved oxygen (DO), Fe(II) and soluble reactive phosphorus (SRP) across the sediment-water interface in the simulated environmental turbulence scenario, For a turbulence intensity (ε) of 3.6 × 10⁻³ m²/s³, the SRP flux increased hence PO₄³⁻-P showed a 36.36% increase relative to its initial level. Although ε of 1.3 × 10⁻² m²/s³ benefited the delivery of oxygen from the bulk aqueous phase to the upper sediment which can trigger the formation of Fe oxides and hydroxides, the turbulence-induced phosphorus diffusion from the sediment exceeded its inactivation and resulted in a large SRP flux. However, a protion of the released PO₄³⁻-P can be immobilized through SS adsorption and biotic (likely cyanobacteria) assimilation. Higher turbulence intensities (ε of 3.3 × 10⁻² and 7.4 × 10⁻² m²/s³) led to an approximately 40-fold increase in TP concentration and a significant increase in sediment suspension, which contributed to the immobilization of a majority of the phosphate through adsorption; thus, the PO₄³⁻-P concentrations in the overlying water displayed 47.75% and 41.67% decline, respectively. This study also confirmed the sequential phosphorus buffer mechanisms associated with increasing turbulence intensities. With an ε of 3.6 × 10⁻³ m²/s³, bounding to Fe ion had a significant impact on phosphorus inactivation but with an ε of 7.4 × 10⁻² m²/s³, the main immobilization mechanism is switched to phosphorus adsorption from the large quantity of suspended sediment.
Show more [+] Less [-]Anticipating the impact of pitfalls in kinetic biodegradation parameter estimation from substrate depletion curves of organic pollutants
2019
Escuder-Gilabert, Laura | Martín-Biosca, Yolanda | Sagrado, Salvador | Medina-Hernández, María José
Accurate and reliable estimation of kinetic parameters of pollutant biodegradation processes is essential for environmental and health risk assessment. Common biodegradation models proposed in the literature, such as the nonlinear Monod equation and its simplified versions (e.g. Michaelis-Menten-like and first-order equations), are problematic in terms of accuracy of kinetic parameters due to the parameter correlation. However, a comparison between these models in terms of accuracy and reliability, related to data imprecision, has not been performed in the literature. This task is necessary, mainly because the model selection cannot be straightforward, as shown in this work. To facilitate the comparison, novel statistics summarising the accuracy and reliability of estimations are introduced. The main objective is to establish relationships between these statistics (trough new diagnostic indicators) to limit the probability of pitfalls or to avoid the negative impact of an improper model selection. Such anticipation is an imperative need in the biodegradation modelling framework and, to the best of our knowledge, it has never been performed. In order to account for accuracy, simulated data in realistic conditions are used to highlight the magnitude of pitfalls related to the model selection for estimation of the main kinetic parameters (Kₛ, μₘ and/or Vₘ). Four scenarios related to model selection are compared for the first time and, diagnostic indicators able to anticipate relevant aspects related to accuracy and reliability are introduced. Moreover, first evidences of the impact of measurement errors in other intrinsic Monod parameters (the initial biomass concentration and the microbial yield coefficient, Y), as well as the impact of the simultaneous μₘ, Kₛ and Y estimation, on the accuracy and reliability of the estimations are reported. Despite the pitfalls shown, specific applicability of even unreliable models is highlighted, and suggestions for environmental and health risk modellers are provided accordingly.
Show more [+] Less [-]Exchanges of nitrogen and phosphorus across the sediment-water interface influenced by the external suspended particulate matter and the residual matter after dredging
2019
Liu, Cheng | Du, Yiheng | Yin, Hongbin | Fan, Chengxin | Chen, Kaining | Zhong, Jicheng | Gu, Xiaozhi
Dredging is frequently implemented for the reduction of internal nitrogen (N) and phosphorus (P) loadings and the control of eutrophication. Residuals during dredging activities and external pollution loadings after dredging both commonly contribute to influence the effectiveness of dredging and have been widely discussed. In the current study, the exchanges of N and P across the sediment-water interface (SWI) to these two factors were compared in a six-month field incubation experiment. The results showed that the continuous deposition of external suspended particulate matter (SPM) led ammonium nitrogen (NH₄⁺N) and soluble reactive phosphorus (SRP) fluxes across the newly formed SWI to increase by factors of 4.16 and 12.71, respectively, while residual material caused the same fluxes to increase by factors of 2.06 and 5.06. Both the deposition of external SPM and the residual matter led to higher increase of the fluxes of P across the SWI than those of the fluxes of N across the SWI after dredging. The SPM easily adsorbed P in the water due to extensive adsorption of water soluble organic matter (consisting primarily of easily-decomposed humic-like substances), iron, and aluminum. However, the decomposition of organic matter in the SPM after the deposition on the dredged sediment accelerated the dissolution of redox-sensitive P and organic P across the SWI after dredging. Both the increase in the fluxes of N and P across the SWI would further increase the concentrations of N and P in the overlying water and thereby aggravate the eutrophication status in lakes. More frequent dredging operations might be necessary to reduce the fluxes of N and P from the sediment due to the continuous influence of the external SPM and the residual matter.
Show more [+] Less [-]Response of soil microbes after direct contact with pyraclostrobin in fluvo-aquic soil
2019
Zhang, Cheng | Zhou, Tongtong | Zhu, Lusheng | Juhasz, Albert | Du, Zhongkun | Li, Bing | Wang, Jun | Wang, Jinhua | Sun, Yan'an
Agricultural chemicals affect the daily life of food production. However, the abuse of pesticides led to the damage to the environment. Pyraclostrobin (PYR) is commonly used strobilurin fungicide which inhibits fungal respiration through mitochondrial cytochrome-b and c1 inhibition. There is increasing concerns that PYR may adversely impact the environment. Although impacts on ecological receptors have been detailed, little information is available regarding the toxicological impact of PYR on soil microbial community dynamics and functioning. Understanding the potential impact on soil microbial populations is important. The activity of enzymes (urease, dehydrogenase, and β-glucosidase) and diversity of microbial community structure using high-throughput 16S rRNA sequencing were evaluated at different soil-PYR concentrations (0.1, 1.0, and 2.5 mg/kg) over a 48 day exposure period. Urease activity remained stable in general. Pyraclostrobin inhibited dehydrogenase activity during the exposure period. The β-glucosidase activity was inhibited on day 28 and induced on day 48 at 1.0 and 2.5 mg/kg. The genera Gp6, Exiguobacterium, Gp4, and Gemmatimonas were both the dominant genera and significantly changed genera. Pyraclostrobin had different level of influence on soil microbes containg their enzyme activity and community structure. The purpose of the current study was to examine the impact of PYR addition on soil enzymes as an indicator of soil health and to have complementary data on the impact of microbial populations. Furthermore, the study may also be the guide for further rational pesticide selection.
Show more [+] Less [-]Characteristics of organic phosphorus fractions in soil from water-level fluctuation zone by solution 31P-nuclear magnetic resonance and enzymatic hydrolysis
2019
Qu, Ying | Wang, Chao | Guo, Jinsong | Huang, Junjie | Fang, Fang | Xiao, Yan | Ouyang, Wenjuan | Lu, Lunhui
Phosphorus (P) is an essential nutrient element for biological growth that can contribute to eutrophication in aquatic ecosystems. Water trophic status and algae growth are primarily related to the content of bioavailable P, which is primarily related to enzymatically hydrolysable organic P(EHOP) and dissolved inorganic P(IP). In this study, soil samples from the water-level fluctuation zone (WLFZ) were collected from a tributary of the Three Gorges Reservoir (TGR) to characterize the properties of organic P(OP) fractions using solution ³¹P-nuclear magnetic resonance (NMR) and enzymatic hydrolysis. ³¹P-NMR showed that orthophosphate was the main part of the bioavailable P in the WLFZ soil and accounted for 80.4% of the NaOH-EDTA extractable total P (NaOH-EDTA TP), while phosphate monoester accounted for 60.5% of NaOH-EDTA extractable OP (NaOH-EDTA OP). The soil properties and replenishment from the mainstream of the Yangtze River to the Pengxi River have a certain effect on the content and distribution of P forms in the WLFZ soil of the tributary. The EHOP accounted for 28.1% of the NaOH-EDTA OP, and a significant positive correlation was observed between labile monoester P and EHOP and organic matter (OM). The water-soluble OP(H₂O-OP), bicarbonate-extractable OP(NaHCO₃-OP), and Fe- and Al-associated OP(Fe/Al-OP) were significantly hydrolyzed by phosphatase and thus exhibited great release potential. The ranking of the bioavailability of OP was Fe/Al-OP > H₂O-OP > NaHCO₃-OP. Phytate-like P were mainly found in H₂O-OP and NaHCO₃-OP, which indicated that periodic submersion–emersion cycles promoted the release of phytate-like P from Fe/Al-OP into the water column of the TGR. These observations suggest that when the external P input was effectively controlled, a huge risk of release of the internal OP from the WLFZ soil, and the biogeochemical cycling of the bioavailable P played an important role in maintaining the eutrophication of the reservoir.
Show more [+] Less [-]Cellular response and extracellular vesicles characterization of human macrophages exposed to fine atmospheric particulate matter
2019
Martin, Perrine J. | Héliot, Amélie | Trémolet, Gauthier | Landkocz, Yann | Dewaele, Dorothée | Cazier, Fabrice | Ledoux, Frédéric | Courcot, Dominique
Exposure to fine atmospheric Particulate Matter (PM) is one of the major environmental causes involved in the development of inflammatory lung diseases, such as chronic obstructive pulmonary disease (COPD) or asthma. When PM is penetrating in the pulmonary system, alveolar macrophages represent the first line of defense, in particular by triggering a pro-inflammatory response, and also by their ability to recruit infiltrating macrophages from the bone marrow. The aim of this in vitro study was to evaluate the gene expression and cytokine production involved in the toxicological and inflammatory responses of infiltrating macrophages, as well as the Extracellular Vesicles (EVs) production, after their exposure to PM. The ability of these EVs to convey information related to PM exposure from exposed macrophages to pulmonary epithelial cells was also evaluated.Infiltrating macrophages respond to fine particles exposure in a conventional manner, as their exposure to PM induced the expression of Xenobiotic Metabolizing Enzymes (XMEs) such as CYP1A1 and CYP1B1, the enzymes involved in oxidative stress SOD2, NQO1 and HMOX as well as pro-inflammatory cytokines in a dose-dependent manner. Exposure to PM also induced a greater release of EVs in a dose-dependent manner. In addition, the produced EVs were able to induce a pro-inflammatory phenotype on pulmonary epithelial cells, with the induction of the release of IL6 and TNFα proinflammatory cytokines. These results suggest that infiltrating macrophages participate in the pro-inflammatory response induced by PM exposure and that EVs could be involved in this mechanism.
Show more [+] Less [-]Bisphenol S-induced chronic inflammatory stress in liver via peroxisome proliferator-activated receptor γ using fish in vivo and in vitro models
2019
Qiu, Wenhui | Yang, Ming | Liu, Jingyu | Xu, Hai | Luo, Shusheng | Wong, Minghung | Zheng, Chunmiao
Bisphenol S (BPS) has been widely used as a bisphenol alternative in recent few years. However, with mounting evidence suggesting that the presence of BPS in the environment also poses risks to ecosystems and human health, we decided to use the juvenile common carp (Cyprinus carpio) and its primary macrophages as in vivo and in vitro models to examine if BPS is a safe substitute of BPA. The present study evaluated the immune responses of chronic BPS exposure and their mechanisms of action associated with peroxisome proliferator-activated receptor (PPAR) signaling pathway. Potential oxidative stress and pro-inflammatory effects of BPS exposure were identified in fish liver after 60-day exposure, based on the increased reactive oxygen species (ROS) production, antioxidant capacity, NO production, lipid peroxidation, and induction of inflammatory cytokine expression, as well as acute phase protein levels of C-reactive protein, immunoglobulin M, lysozyme, and complement component 3. Moreover, pparγ, PPAR pathway-associated genes retinoid x receptor α (rxrα) and nuclear factor-κb (nfκb) presented a rough concentration-dependent alteration after BPS exposure. An acute BPS exposure to the isolated primary macrophages from juvenile common carp was performed to help elucidate gene expression patterns of pparγ, rxrα, and nfκb in a typical immune cell model, the results were consistent with what we found in vivo experiments for long-term BPS exposure. Furthermore, with coexposure to BPS and a PPARγ antagonist, the restriction of PPAR signaling pathway significantly inhibited the induction of ROS and the mRNA level of interleukin-1β, confirming the involvement of PPAR pathway in BPS-induced chronic inflammatory stress in liver.
Show more [+] Less [-]