Refine search
Results 881-890 of 4,241
Contamination characteristics and source apportionment of methylated PAHs in agricultural soils from Yangtze River Delta, China
2017
Chen, Weixiao | Wu, Xinyi | Zhang, Haiyun | Sun, Jianteng | Liu, Wenxin | Zhu, Lizhong | Li, Xiangdong | Tsang, Daniel C.W. | Tao, Shu | Wang, Xilong
Alkylated PAHs (APAHs) have been shown to be more toxic and persistent than their non-alkylated parent compounds. However, little is known about the extent of soil contamination by these pollutants. To help understand agricultural soil pollution by these compounds at a regional scale, a total of 18 methylated PAHs (MPAHs, a major class of APAHs) in 243 soil samples were analyzed. These soil samples were collected from 11 sites in the Yangtze River Delta (YRD) region, a representative fast developing area in China. The total concentration of MPAHs (∑18MPAHs) ranged from 5.5 to 696.2 ng/g dry soil, with methylnaphthalenes (M-NAPs) and methylphenanthrenes (M-PHEs) accounting for more than 70% of the compositional profile. Relatively high concentrations of ∑18MPAHs were found in Jiaxing and Huzhou areas of Zhejiang province, as well as on the border between the cities of Wuxi and Suzhou. Different MPAH groups showed dissimilar spatial distribution patterns. The spatial distribution of lower molecular weight MPAHs was related to agricultural straw burning and emissions/depositions from industrial activities, whereas that of higher molecular weight MPAHs was much more a function of the total organic carbon (TOC) content of soil. Although coal, biomass (crop straw and wood), and petroleum combustion were identified to be the major emission sources for most of the sampling sites, the areas with relatively severe pollution with ∑18MPAHs resulted from the localized hotspots of petroleum leakage. Isomeric MPAHs with methyl group substituted at 2- (β) position exhibited significantly higher concentrations than those substituted at 1- (α) position. Results of this work help to understand soil pollution by MPAHs, and are useful for designing effective strategies for pollution control so as to ensure food safety in areas with fast economic growth.
Show more [+] Less [-]Contaminants of emerging concern in the open sea waters of the Western Mediterranean
2017
Brumovský, Miroslav | Bečanová, Jitka | Kohoutek, Jiří | Borghini, Mireno | Nizzetto, Luca
Pollution by chemical substances is of concern for the maintenance of healthy and sustainable aquatic environments. While the occurrence and fate of numerous emerging contaminants, especially pharmaceuticals, is well documented in freshwater, their occurrence and behavior in coastal and marine waters is much less studied and understood. This study investigates the occurrence of 58 chemicals in the open surface water of the Western Mediterranean Sea for the first time. 70 samples in total were collected in 10 different sampling areas. 3 pesticides, 11 pharmaceuticals and personal care products and 2 artificial sweeteners were detected at sub-ng to ng/L levels. Among them, the herbicide terbuthylazine, the pharmaceuticals caffeine, carbamazepine, naproxen and paracetamol, the antibiotic sulfamethoxazole, the antibacterial triclocarban and the two artificial sweeteners acesulfame and saccharin were detected in all samples. The compound detected at the highest concentration was saccharin (up to 5.23 ng/L). Generally small spatial differences among individual sampling areas point to a diffuse character of sources which are likely dominated by WWTP effluents and runoffs from agricultural areas or even, at least for pharmaceuticals and artificial food additives, from offshore sources such as ferries and cruising ships. The implications of the ubiquitous presence in the open sea of chemicals that are bio-active or toxic at low doses on photosynthetic organisms and/or bacteria (i.e., terbuthylazine, sulfamethoxazole or triclocarban) deserve scientific attention, especially concerning possible subtle impacts from chronic exposure of pelagic microorganisms.
Show more [+] Less [-]Spatiotemporal description of BTEX volatile organic compounds in a middle eastern megacity: Tehran Study of Exposure Prediction for Environmental Health Research (Tehran SEPEHR)
2017
Amini, Heresh | Hosseini, Vahid | Schindler, Christian | Hassankhany, Hossein | Yunesian, Masud | Henderson, Sarah B. | Künzli, Nino
The spatiotemporal variability of ambient volatile organic compounds (VOCs) in Tehran, Iran, is not well understood. Here we present the design, methods, and results of the Tehran Study of Exposure Prediction for Environmental Health Research (Tehran SEPEHR) on ambient concentrations of benzene, toluene, ethylbenzene, p-xylene, m-xylene, and o-xylene (BTEX). To date, this is the largest study of its kind in a low- and middle-income country and one of the largest globally. We measured BTEX concentrations at five reference sites and 174 distributed sites identified by a cluster analysis method. Samples were taken over 25 2-weeks at five reference sites (to be used for temporal adjustments) and over three 2-week campaigns in summer, winter, and spring at 174 distributed sites. The annual median (25th–75th percentile) for benzene, the most carcinogenic of the BTEX species, was 7.8 (6.3–9.9) μg/m3, and was higher than the national and European Union air quality standard of 5 μg/m3 at approximately 90% of the measured sites. The estimated annual mean concentrations of BTEX were spatially highly correlated for all pollutants (Spearman rank coefficient 0.81–0.98). In general, concentrations and spatial variability were highest during the summer months, most likely due to fuel evaporation in hot weather. The annual median of benzene and total BTEX across the 35 sites in the Tehran regulatory monitoring network (7.7 and 56.8 μg/m3, respectively) did a reasonable job of approximating the 144 city-wide sites (7.9 and 58.7 μg/m3, respectively). The annual median concentrations of benzene and total BTEX within 300 m of gas stations were 9.1 and 67.3 μg/m3, respectively, and were higher than sites outside this buffer. We further found that airport did not affect annual BTEX concentrations of sites within 1 km. Overall, the observed ambient concentrations of toxic VOCs are a public health concern in Tehran.
Show more [+] Less [-]Aryl- and alkyl-phosphorus-containing flame retardants induced mitochondrial impairment and cell death in Chinese hamster ovary (CHO-k1) cells
2017
Huang, Chao | Li, Na | Yuan, Shengwu | Ji, Xiaoya | Ma, Mei | Rao, Kaifeng | Wang, Zijian
Phosphorus-containing flame retardants (PFRs) are increasingly in demand worldwide as replacements for brominated flame retardants (BFRs), but insufficient available toxicological information on PFRs makes assessing their health risks challenging. Mitochondria are important targets of various environmental pollutants, and mitochondrial dysfunction may lead to many common diseases. In the present study, mitochondria impairment-related endpoints were measured by a high content screening (HCS) assay for 11 selected non-halogen PFRs in Chinese hamster ovary (CHO-k1) cells. A cluster analysis was used to categorize these PFRs into three groups according to their structural characteristics and results from the HCS assay. Two groups, containing long-chain alkyl-PFRs and all aryl-PFRs, were found to cause mitochondrial impairment but showed different mechanisms of toxicity. Due to the high correlation between cell death and mitochondrial impairment, two PFRs with different structures, trihexyl phosphate (THP) and cresyl diphenyl phosphate (CDP), were selected and compared with chlorpyrifos (CPF) to elucidate their mechanism of inducing cell death. THP (an alkyl-PFR) was found to utilize a similar pathway as CPF to induce apoptosis. However, cell death induced by CDP (an aryl-PFR) was different from classical necrosis based on experiments to discriminate among the different modes of cell death. These results confirm that mitochondria might be important targets for some PFRs and that differently structured PFRs could function via distinct mechanisms of toxicity.
Show more [+] Less [-]PAHs accelerate the propagation of antibiotic resistance genes in coastal water microbial community
2017
Wang, Jing | Wang, Jing | Zhao, Zelong | Chen, Jingwen | Lu, Hong | Liu, Guangfei | Zhou, Jiti | Guan, Xiaoyan
Antibiotic resistance genes (ARGs) have been regarded as emerging contaminants and have attracted growing attention owing to their widespread presence in the environment. In addition to the well-documented selective pressure of antibiotics, ARGs have also become prevalent because of anthropogenic impacts. Coastal habitats are located between terrestrial and marine ecosystems, which are a hotspot for anthropogenic impacts. Excessive accumulation of polycyclic aromatic hydrocarbons (PAHs) has posed a serious threat to coastal habitats, but no information is available on the effect of PAHs on antibiotic resistance in the microbial community of coastal environments. In this study, the effect of two typical PAHs, naphthalene and phenanthrene, on antibiotic resistance propagation was investigated in a coastal microbial community. The results indicated that the presence of 100 mg/L of naphthalene or 10 mg/L of phenanthrene significantly enhanced the abundance of class I integrase gene (intI1), sulfanilamide resistance gene (sulI), and aminoglycosides resistance gene (aadA2) in the microbial community. Horizontal gene transfer experiment demonstrated that increased abundance of ARGs was primarily a result of conjugative transfer mediated by class I integrons. These findings provided direct evidence that coastal microbial community exposed to PAHs might have resulted in the dissemination of ARGs and implied that a more comprehensive risk assessment of PAHs to natural ecosystems and public health is necessary.
Show more [+] Less [-]Microplastic contamination in Lake Winnipeg, Canada
2017
Anderson, Philip J. | Warrack, Sarah | Langen, Victoria | Challis, Jonathan K. | Hanson, Mark L. | Rennie, Michael D.
Microplastics are an emerging contaminant of concern in aquatic ecosystems. To better understand microplastic contamination in North American surface waters, we report for the first time densities of microplastics in Lake Winnipeg, the 11th largest freshwater body in the world. Samples taken 2014 to 2016 revealed similar or significantly greater microplastic densities in Lake Winnipeg compared with those reported in the Laurentian Great Lakes. Plastics in the lake were largely of secondary origin, overwhelmingly identified as fibres. We detected significantly greater densities of microplastics in the north basin compared to the south basin of the lake in 2014, but not in 2015 or 2016. Mean lake-wide densities across all years were comparable and not statistically different. Scanning electron microscopy with energy dispersive X-ray spectroscopy indicated that 23% of isolated particles on average were not plastic. While the ecological impact of microplastics on aquatic ecosystems is still largely unknown, our study contributes to the growing evidence that microplastic contamination is widespread even around sparsely-populated freshwater ecosystems, and provides a baseline for future study and risk assessments.
Show more [+] Less [-]Influence of flue gas desulfurization (FGD) installations on emission characteristics of PM2.5 from coal-fired power plants equipped with selective catalytic reduction (SCR)
2017
Li, Zhen | Jiang, Jingkun | Ma, Zizhen | Fajardo, Oscar A. | Deng, Jianguo | Duan, Lei
Flue gas desulfurization (FGD) and selective catalytic reduction (SCR) technologies have been widely used to control the emissions of sulphur dioxide (SO2) and nitrogen oxides (NOX) from coal-fired power plants (CFPPs). Field measurements of emission characteristics of four conventional CFPPs indicated a significant increase in particulate ionic species, increasing PM2.5 emission with FGD and SCR installations. The mean concentrations of PM2.5 from all CFPPs tested were 3.79 ± 1.37 mg/m3 and 5.02 ± 1.73 mg/m3 at the FGD inlet and outlet, respectively, and the corresponding contributions of ionic species were 19.1 ± 7.7% and 38.2 ± 7.8%, respectively. The FGD was found to enhance the conversion of NH3 slip from the SCR to NH4+ in the PM2.5, together with the conversion of SO2 to SO42-, and increased the primary NH4+ and SO42- aerosol emissions by approximately 18.9 and 4.2 times, respectively. This adverse effect should be considered when updating the emission inventory of CFPPs and should draw the attention of policy-makers for future air pollution control.
Show more [+] Less [-]Source apportionment of Pb-containing particles in Beijing during January 2013
2017
Cai, Jing | Wang, Jiandong | Zhang, Yanjun | Tian, Hezhong | Zhu, Chuanyong | Gross, Deborah S. | Hu, Min | Hao, Jiming | He, Kebin | Wang, Shuxiao | Zheng, Mei
Although leaded gasoline has been banned in some megacities in China since 1997 and nationally since 2000, atmospheric lead (Pb) pollution is still an important issue in China, as its concentration in megacities such as Beijing remains high. To measure the Pb concentration and identify sources of Pb-containing particles in Beijing during January 2013, both an online Single Particle Aerosol Mass Spectrometer (SPAMS) and offline filters analyzed by inductively coupled plasma-mass spectrometer (ICP-MS) were used at a monitoring site on the Peking University (PKU) campus. The average Pb concentration in PM2.5 was 370 ng/m3 in January 2013 and the highest daily concentration was as high as 1.3 μg/m<sup>3</sup> during our sampling period. Based on the mass spectra from the SPAMS, these particles were classified into 4 major types, including NO3-rich (61%), ECOC-rich (18%), Fe-rich (14%), and SO4-rich (7%). Results from this study suggest that combustion processes and the iron/steel industry were the major primary sources of Pb in Beijing. On clean days, the importance of the primary combustion particle type (ECOC-rich) increased, while during severe haze episodes, Pb-containing particles mixed with secondary ions and Fe were dominant. Based on estimates from the CMAQ model, on average 45% of Pb in PM2.5 in urban Beijing was transported in January 2013, with a much higher percent transported during the haze episodes. The percentage of transported Pb increased with the concentration of Pb and PM2.5, indicating that emissions from the surrounding areas need to be controlled during high Pb episodes in Beijing in winter.
Show more [+] Less [-]Microplastics in the sediments of a UK urban lake
2017
Vaughan, Rebecca | Turner, Simon D. | Rose, N. L. (Neil L.)
While studies on microplastics in the marine environment show their wide-distribution, persistence and contamination of biota, the freshwater environment remains comparatively neglected. Where studies on freshwaters have been undertaken these have been on riverine systems or very large lakes. We present data on the distribution of microplastic particles in the sediments of Edgbaston Pool, a shallow eutrophic lake in central Birmingham, UK. These data provide, to our knowledge, the first assessment of microplastic concentrations in the sediments of either a small or an urban lake and the first for any lake in the UK. Maximum concentrations reached 25–30 particles per 100 g dried sediment (equivalent to low hundreds kg−1) and hence are comparable with reported river sediment studies. Fibres and films were the most common types of microplastic observed. Spatial distributions appear to be due to similar factors to other lake studies (i.e. location of inflow; prevailing wind directions; propensity for biofouling; distribution of macroplastic debris) and add to the growing burden of evidence for microplastic ubiquity in all environments.
Show more [+] Less [-]Soil solution interactions may limit Pb remediation using P amendments in an urban soil
2017
Obrycki, John F. | Scheckel, Kirk G. | Basta, Nicholas T.
Lead (Pb) contaminated soils are a potential exposure hazard to the public. Amending soils with phosphorus (P) may reduce Pb soil hazards. Soil from Cleveland, OH containing 726 ± 14 mg Pb kg⁻¹ was amended in a laboratory study with bone meal and triple super phosphate (TSP) at 5:1 P:Pb molar ratios. Soil was acidified, neturalized and re-acidified to encourage Pb phosphate formation. PRSTM-probes were used to evaluate changes in soil solution chemistry. Soil acidification did not decrease in vitro bioaccessible (IVBA) Pb using either a pH 1.5, 0.4 M glycine solution or a pH 2.5 solution with organic acids. PRSTM-probe data found soluble Pb increased 10-fold in acidic conditions compared to circumnetural pH conditions. In acidic conditions (p = 3-4), TSP treated soils increased detected P 10-fold over untreated soils. Bone meal application did not increase PRSTM-probe detected P, indicating there may have been insufficient P to react with Pb. X-ray absorption spectroscopy suggested a 10% increase in pyromorphite formation for the TSP treated soil only. Treatments increased soil electrical conductivity above 16 mS cm⁻¹, potentially causing a new salinity hazard. This study used a novel approach by combining the human ingestion endpoint, PRSTM-probes, and X-ray absorption spectroscopy to evaluate treatment efficacy. PRSTM-probe data indicated potentially excess Ca relative to P across incubation steps that could have competed with Pb for soluble P. More research is needed to characterize soil solutions in Pb contaminated urban soils to identify where P treatments might be effective and when competing cations, such as Ca, Fe, and Zn may limit low rate P applications for treating Pb soils.
Show more [+] Less [-]