Refine search
Results 891-900 of 6,546
Comparing CaCl2, EDTA and DGT methods to predict Cd and Ni accumulation in rice grains from contaminated soils Full text
2020
Ma, Qiang | Zhao, Wanfu | Guan, Dong-Xing | Teng, H Henry | Ji, Junfeng | Ma, Lena Q.
Urbanization and industrialization have elevated metal concentrations in soils. However, systematic investigation on their availability in regional soils under industrial impacts is lacking. In this study, 230 paired soil-rice samples were collected from two areas in Southeast China, with low and high industrial impacts. Classic equilibrium-based CaCl₂ and EDTA extraction methods, and dynamic-based diffusive gradients in thin-films (DGT) technique were used to study metal availability in soils, with the results being compared with metal concentrations in soils and rice grains. Generally, Cd, Ni, Cu, Zn, Cr and Pb concentrations in soils exceeded the Chinese Soil Quality Standard (GB15618-2018), whereas only Cd and Ni in some rice grains exceeded the Chinese Safety Guidelines. CaCl₂ and EDTA extractions, DGT method and soil total metal concentrations provided good predication of grain Cd (R = 0.51–0.66, p < 0.01), whereas only CaCl₂ and DGT tests provided good predication of grain Ni (R = 0.36–0.47, p < 0.01). Overall, CaCl₂ extraction best predicted Cd and Ni accumulation in rice grains, explaining 66% of grain Cd and 47% of grain Ni. The extraction rate of available Cd was higher than that of Ni, indicating higher Cd availability than Ni, consistent with the parameters (response time, Tc, and desorption rate, k–₁) from DIFS (DGT-induced flux in soils) model and bioconcentration factor values. This study showed that, at regional scale, CaCl₂ extraction method is efficient in predicting Cd and Ni accumulation in rice grains from contaminated soils.
Show more [+] Less [-]Improving the understanding of central Bohai Sea eutrophication based on wintertime dissolved inorganic nutrient budgets: Roles of north Yellow Sea water intrusion and atmospheric nitrogen deposition Full text
2020
Zheng, Li-wen | Zhai, Wei-dong | Wang, Lifang | Huang, Tao
The Bohai Sea is a shallow-water, semi-enclosed marginal sea of the Northwest Pacific. Since the late 1990s, it has suffered from nutrient over-enrichment. To better understand the eutrophication characteristics of this important coastal sea, we examined four survey datasets from summer (June 2011), late autumn (November 2011), winter (January 2016), and early spring (April 2018). Nutrient conditions in the Bohai Sea were subject to seasonal and regional variations. Survey-averaged N/P ratios in estuarine and nearshore areas were 20–133. In contrast, the central Bohai Sea had mean N/P ratios of 16.9 ± 3.4 in late autumn, 16.1 ± 3.0 in winter and 13.5 ± 5.8 in early spring, which are close to the traditional N:P Redfield ratio of 16. In summer, both dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphate (DIP) were used up in the surface waters of the central Bohai Sea, suggesting that the biological consumption of DIN and DIP may also follow the Redfield ratio. Wintertime nutrient budgets of the central Bohai Sea water were then established based on a mass balance study. Our results suggest that the adjacent North Yellow Sea supplied additional DIP to the central Bohai Sea via wintertime water intrusion, balancing terrigenous excess DIN that was introduced in summer. A water-mixing simulation combining these two nutrient sources with atmospheric nitrogen deposition suggests that eutrophication in the central Bohai Sea will likely be enhanced by the large-scale accumulation of anthropogenic nitrogen in adjacent open oceans. Such changes in nutrients may have fundamentally contributed to the recent development of algal blooms and seasonal hypoxia in the central Bohai Sea.
Show more [+] Less [-]Effects of different mobile phone UMTS signals on DNA, apoptosis and oxidative stress in human lymphocytes Full text
2020
Gulati, Sachin | Kosik, Pavol | Durdik, Matus | Skorvaga, Milan | Jakl, Lukas | Markova, Eva | Belyaev, Igor
Different scientific reports suggested link between exposure to radiofrequency radiation (RF) from mobile communications and induction of reactive oxygen species (ROS) and DNA damage while other studies have not found such a link. However, the available studies are not directly comparable because they were performed at different parameters of exposure, including carrier frequency of RF signal, which was shown to be a critical for appearance of the RF effects. For the first time, we comparatively analyzed genotoxic effects of UMTS signals at different frequency channels used by 3G mobile phones (1923, 1947.47, and 1977 MHz). Genotoxicity was examined in human lymphocytes exposed to RF for 1 h and 3 h using complimentary endpoints such as induction of ROS by imaging flow cytometry, DNA damage by alkaline comet assay, mutations in TP53 gene by RSM assay, preleukemic fusion genes (PFG) by RT-qPCR, and apoptosis by flow cytometry. No effects of RF exposure on ROS, apoptosis, PFG, and mutations in TP53 gene were revealed regardless the UMTS frequency while inhibition of a bulk RNA expression was found. On the other hand, we found relatively small but statistically significant induction of DNA damage in dependence on UMTS frequency channel with maximal effect at 1977.0 MHz. Our data support a notion that each specific signal used in mobile communication should be tested in specially designed experiments to rule out that prolonged exposure to RF from mobile communication would induce genotoxic effects and affect the health of human population.
Show more [+] Less [-]On-road vehicle emission inventory and its spatio-temporal variations in North China Plain Full text
2020
Jiang, Peiyu | Zhong, Xi | Li, Lingyu
Vehicle emissions are a major contributor to air pollution in China. In this study, a high-resolution inventory of eight on-road vehicle-emitted pollutants in 53 cities within the North China Plain (NCP) was established for 152 sub-sources. Monthly emission factors were then simulated using the COPERT v5 model and their spatial distribution at 4 km × 4 km resolution was allocated based on the transportation network. In 2017, emissions of BC, CO, NH₃, NMVOCs, NOₓ, PM₁₀, PM₂.₅, and SO₂ were 38.3, 2900, 21.8, 578, 2460, 113, 85.9, and 4.7 kt, respectively. These emissions and their sources differed between cities, mainly due to different vehicle populations, fleet compositions, emission share rates of different vehicle types, and emission standards in each city. Small-medium petrol passenger cars and both 20–26 t and 40–50 t heavy-duty diesel trucks of China 3 and 4 emissions standards were the main contributors for all pollutants. Higher cold-start emission factors caused higher emissions of CO, NMVOCs, NOₓ, and PM₂.₅ in winter. The cities of Beijing, Zhengzhou, Tianjin, Tangshan, Xuzhou, Qingdao, Jinan, Jining, and Zibo had the highest emission intensities. Overall, emissions decreased from the city centers toward surrounding areas. The higher contributions of heavy-duty trucks meant that higher emissions appeared along highways in a vein-like distribution. These results provide a theoretical basis for the effective prevention and control of air pollution in the NCP.
Show more [+] Less [-]Multisensory pollution: Artificial light at night and anthropogenic noise have interactive effects on activity patterns of great tits (Parus major) Full text
2020
Dominoni, Davide | Smit, Judith A.H. | Visser, Marcel E. | Halfwerk, Wouter
Urbanisation is increasing globally at a rapid pace. Consequently, wild species face novel environmental stressors associated with urban sprawl, such as artificial light at night and noise. These stressors have pervasive effects on the behaviour and physiology of many species. Most studies have singled out the impact of just one of these stressors, while in the real world they are likely to co-occur both temporally and spatially, and we thus lack a clear understanding of the combined effect of anthropogenic stressors on wild species. Here, we experimentally exposed captive male great tits (Parus major) to artificial light at night and 24 h noise in a fully factorial experiment. We then measured the effect of both these stressors on their own and their combination on the amount and timing of activity patterns. We found that both light and noise affected activity patterns when presented alone, but in opposite ways: light increased activity, particularly at night, while noise reduced it, particularly during the day. When the two stressors were combined, we found a synergistic effect on the total activity and the nighttime activity, but an antagonistic effect on daytime activity. The significant interaction between noise and light treatment also differed among forest and city birds. Indeed, we detected a significant interactive effect on light and noise on daytime, nighttime, dusktime and offset of activity of urban birds, but not of forest birds. These results suggest that both artificial light at night and anthropogenic noise can drive changes in activity patterns, but that the specific impacts depend on the habitat of origin. Furthermore, our results demonstrate that co-occurring exposure to noise and light can lead to a stronger impact at night than predicted from the additive effects and thus that multisensory pollution may be a considerable threat for wildlife.
Show more [+] Less [-]High and low temperatures aggravate airway inflammation of asthma: Evidence in a mouse model Full text
2020
Deng, Linjing | Ma, Ping | Wu, Yang | Ma, Yongsheng | Yang, Xu | Li, Yuguo | Deng, Qihong
Epidemiology suggests ambient temperature is the triggers and potential activator of asthma. The role of high and low temperatures on airway inflammation of asthma, and the underlying molecular mechanism are not yet understood. A mouse model of asthma was adopted in our experiment. The BALB/c mice were exposed at different temperature for 4 h (2 h in the morning and 2 h in the afternoon) on weekday. The exposure temperatures were 10 °C, 24 °C and 40 °C. Ovalbumin (OVA) was used to sensitize the mice on days 14, 18, 22, 26, and 30, followed by an aerosol challenge for 30 min from day 32–38. After the final OVA challenge, lung function, serum protein and pulmonary inflammation were assessed. Comparing the OVA with the saline group at 24 °C, we saw a significant increase in: serum Total-IgE (p < 0.05); OVA-sIgE (p < 0.01); IL-4 (p < 0.05); IL-1β (p < 0.01); IL-6 (p < 0.01); TNF-α (p < 0.01); and the ratio of IL-4/IFN-γ (p < 0.01). At the same time, there was a significant decrease in IFN-γ (p < 0.01). As the temperature increase, there is a U shape for immune proteins and pro-inflammatory factors with a peak value at 24 °C, exception for IFN-γ (inverted U-shape). After the high and low temperature exposure, the Ri and Re increased significantly, while Cldyn decreased significantly compared with the 24 °C group. Histopathological analysis of the OVA groups showed airway remodeling, airway wall thickening and deforming, and subepithelial fibrosis. More obvious changes were found in the high and low temperature exposure groups. The immunohistochemistry suggested that TRPs changed with temperatures. High and low temperatures can aggravate airway inflammation in a mouse model of asthma. TRPs play an important role in temperature aggravation of allergic asthma. The results suggest that asthmatics should avoid exposure to high and low temperatures for too long time.
Show more [+] Less [-]Urinary concentrations of phthalates in relation to circulating fatty acid profile in National Health and Nutrition Examination Survey, 2003–2004 and 2011–2012 Full text
2020
Li, Ming-Chieh | Lin, Jingyu | Guo, Yue Leon
Animal studies have suggested that phthalate exposure alters the fatty acid composition of blood plasma. Therefore, we conducted an epidemiological study to examine whether urinary concentrations of phthalates are correlated with circulating fatty acids in the general US population. The 2003–2004 and 2011–2012 National Health and Nutrition Examination Survey were used in this study. Ten urinary phthalate metabolites and 23 fatty acids were measured. Fatty acid patterns were identified using principal component analysis (PCA) with an eigenvalue greater than 1. A two-step analysis was performed. We first performed multivariable linear regressions to evaluate whether urinary phthalate metabolites were related to the PCA-derived components of blood fatty acid levels. Then we performed multivariable linear regressions to investigate each of the fatty acids that were suggestively correlated with some of the phthalates in PCA. There were 994 participants (51.91% women). As for men, after adjustments for potential confounding factors, MECPP, MEHHP, and ∑DEHP were all positively correlated with gamma-linolenic, myristoleic, and myristic acids; both MEHHP and ∑DEHP were positively correlated with stearic acid; MMP was positively correlated with docosahexaenoic acid. As for women, MMP was negatively correlated with docosanoic, lignoceric, and arachidic acids; MBzP was negatively correlated with docosahexaenoic acid; both MEHP and MCPP were negatively correlated with docosatetraenoic acid; MEHP was negatively correlated with arachidonic acid, and MCPP was negatively correlated with docosapentaenoic-6 acid. Our findings support that phthalates may be correlated with circulating fatty acids.
Show more [+] Less [-]Programming of hepatic lipid metabolism in a rat model of postnatal nicotine exposure – Sex-related differences Full text
2020
Bertasso, Iala Milene | Pietrobon, Carla Bruna | Lopes, Bruna Pereira | Peixoto, Thamara Cherem | Soares, Patrícia Novaes | Oliveira, Elaine | Manhães, Alex Christian | Bonfleur, Maria Lucia | Balbo, Sandra Lucinei | Cabral, Suellen Silva | Gabriel Kluck, George Eduardo | Atella, Georgia Correa | Gaspar de Moura, Egberto | Lisboa, Patrícia Cristina
Maternal nicotine exposure during lactation induces liver damage in adult male rats. However, the mechanism in males is unknown and females have not been tested. Here, we determined the liver lipid composition and lipogenic enzymes in male and female offspring at two ages in a model of postnatal nicotine exposure. Osmotic minipumps were implanted in lactating Wistar rat dams at postnatal day (PND) 2 to release 6 mg/kg/day of nicotine (NIC group) or saline (CON group) for 14 days. Offspring received a standard diet from weaning until euthanasia at PND120 (1 pup/litter/sex) or PND180 (2 pups/litter/sex). At PND120, NIC males showed lower plasma triglycerides (TG), steatosis degree 1, higher hepatic cholesterol (CHOL) ester, free fatty acids, monoacylglycerol content as well as acetyl-coa carboxylase-1 (ACC-1) and fatty acid synthase (FAS) protein expression in the liver compared to CON males. At this age, NIC females had preserved hepatocytes architecture, higher plasma CHOL, higher CHOL ester and lower total CHOL content in the liver compared to CON females. At PND180, NIC males showed steatosis degrees 1 and 2, higher TG, lower free fatty acids and total CHOL content in the liver and an increase in ACC-1 hepatic protein expression. NIC females had higher plasma TG and CHOL levels, no change in hepatic morphology, lower CHOL ester and free fatty acids in the liver, which also showed higher total ACC-1 and FAS protein expression. Maternal nicotine exposure induces long-term liver dysfunction, with an alteration in hepatic cytoarchitecture that was aggravated with age in males. Concerning females, despite unchanged hepatic cytoarchitecture, lipid metabolism was compromised, which deserves further attention.
Show more [+] Less [-]Biochar amendment mitigates greenhouse gases emission and global warming potential in dairy manure based silage corn in boreal climate Full text
2020
Ashiq, Waqar | Nadeem, Muhammad | Ali, Waqas | Zaeem, Muhammad | Wu, Jianghua | Galagedara, Lakshman | Thomas, Raymond | Kavanagh, Vanessa | Cheema, Mumtaz
About 11% of the global anthropogenic greenhouse gases (GHGs) emissions result from agricultural practices. Dairy manure (DM) application to soil is regarded as a best management practice due to C sequestration and improvement of soil physiochemical properties. However, GHGs emissions from the soil following the DM application could offset its advantages. Biochar (BC) is known to affect N transformation and GHGs emissions from soil. There had been considerably less focus on the BC amendment and its effects on GHGs emissions following DM application under field conditions. The objectives of this study were; i) to determine the temporal patterns and cumulative GHGs fluxes following DM and inorganic nitrogen (IN) application and, ii) to investigate BC amendment impact on DMY, GWP, direct N₂O emission factor (EFd) and the response of CH₄ emissions (RC) in DM based silage corn. To achieve these objectives a two-year field experiment was conducted with these treatments: 1) DM with high N conc. (DM₁: 0.37% N); 2) DM with low N conc. (DM₂: 0.13% N); 3) IN; 4) DM₁+BC; 5) DM₂+BC; 6) IN + BC; and 7) Control (N₀); and were laid out in randomized complete block design with four replications. BC amendment to DM₁, DM₂ and IN significantly reduced cumulative CO₂ emission by 16, 25.5 and 26.5%, CH₄ emission by 184, 200 and 293% and N₂O emission by 95, 86 and 93% respectively. It also reduced area-scaled and yield-scaled GWP, EFd, RC and enhanced DMY. Thus, BC application showed great potential to offset the negative effects of DM application i.e GHGs emissions from the silage corn cropping system. Further research is needed to evaluate soil organic carbon and nitrogen dynamics (substrates for GHG emissions) after DM and BC application on various soil types and cropping systems under field conditions.
Show more [+] Less [-]An innovative in vitro assay to study the effects of aromatic pollutants on porphyrin systems Full text
2020
Yu, Jing | Chen, Pin | Yang, Jun | Qiu, Xiaoqing | Qiu, Guohong | Zhu, Shukui
Interactions between aromatic pollutants (APs) and porphyrin nucleus as physiological receptors have a significant effect on biological functions of porphyrin-based systems in organism. However, the details on the interaction at molecule level are still elusive. Herein, interaction mechanisms between two typical APs (methylene blue, MB and benzo[a]pyrene, B[a]P) and meso-tetra (4-carboxyphenyl) porphine (TCPP) as physiological receptors were systematically investigated. Adsorption behaviors of TCPP to B[a]P was dominated by pi-pi interaction, while interaction between TCPP and MB coupled with a multi-force field including hydrophobic, pi-pi, electrostatic, and H-bonding interactions. The relative contributions of these four forces obeyed an order: H-bonding > pi-pi > electrostatic > hydrophobic, regardless of the pH value and the initial concentration of MB. H-bonding assisted by hydrogen/hydroxide ion was the most influential force. According to the effect of pH and temperature, organisms exposed to cellular environment with high alkalinity and high temperature might uptake more APs molecules with chemical properties similar to MB and suffered greater health risks. In detail, APs might replace amino acid molecules surrounding porphyrin and change the distortion type of porphyrin molecule, and then affect biological functions of porphyrin and related proteins. This study facilitates a better understanding of potential toxicity of organisms in contaminated environment.
Show more [+] Less [-]