Refine search
Results 891-900 of 7,921
Multiomics assessment in Enchytraeus crypticus exposed to Ag nanomaterials (Ag NM300K) and ions (AgNO3) – Metabolomics, proteomics (& transcriptomics)
2021
Maria, Vera L. | Licha, David | Scott-Fordsmand, Janeck J. | Huber, Christian G. | Amorim, Mónica J.B.
Silver nanomaterials (AgNMs) are broadly used and among the most studied nanomaterials. The underlying molecular mechanisms (e.g. protein and metabolite response) that precede phenotypical effects have been assessed to a much lesser extent. In this paper, we assess differentially expressed proteins (DEPs) and metabolites (DEMs) by high-throughput (HTP) techniques (HPLC-MS/MS with tandem mass tags, reversed-phase (RP) and hydrophilic interaction liquid chromatography (HILIC) with mass spectrometric detection). In a time series (0, 7, 14 days), the standard soil model Enchytraeus crypticus was exposed to AgNM300K and AgNO₃ at the reproduction EC20 and EC50. The impact on proteins/metabolites was clearly larger after 14 days. NM300K caused more upregulated DEPs/DEMs, more so at the EC20, whereas AgNO₃ caused a dose response increase of DEPs/DEMs. Similar pathways were activated, although often via opposite regulation (up vs down) of DEPs, hence, dissimilar mechanisms underlie the apical observed impact. Affected pathways included e.g. energy and lipid metabolism and oxidative stress. Uniquely affected by AgNO₃ was catalase, malate dehydrogenase and ATP-citrate synthase, and heat shock proteins (HSP70) and ferritin were affected by AgNM300K. The gene expression-based data in Adverse Outcome Pathway was confirmed and additional key events added, e.g. regulation of catalase and heat shock proteins were confirmed to be included. Finally, we observed (as we have seen before) that lower concentration of the NM caused higher biological impact. Data was deposited to ProteomeXchange, identifier PXD024444.
Show more [+] Less [-]Indoor-outdoor relationships of airborne nanoparticles, BC and VOCs at rural and urban preschools
2021
Portela, Nicole Becker | Teixeira, Elba Calesso | Agudelo-Castañeda, Dayana Milena | Civeira, Matheus da Silva | Silva, Luís Felipe Oliveira | Vigo, Alvaro | Kumar, Prashant
Health risks caused by exposure to black carbon (BC) and nanoparticles (NP) are well studied, although no standard currently exists for them worldwide. Exposure to children may lead to serious health effects due to their increased vulnerability and longer time spend inside the classrooms, making it important to assess the factors that affect air quality in preschools. Thus, this work aims to evaluate indoor-outdoor (I/O) relationships of NPs in the 10–420 nm range, BC and volatile organic compounds (VOCs) at rural and urban preschools (aged 3–5 years) between May 2016 and July 2017. Factorial analysis was applied to identify the possible emission sources. Prior communalities were estimated by the squared multiple correlations with all other variables. We used the varimax rotation method and the criterion for factor selection was the number of eigenvalues greater than one. Results indicate that BC and NP were 4- and 3.2-times higher in urban outdoor caused by traffic emissions, respectively. Highest concentrations occurred during rush hours and during the pickup time of children. In urban school, BC was directly related to accumulation mode (N₄₉₋₂₀₅), while in the rural area, BC was related to local traffic and particles from pulp industries in the regional background. Nucleation mode (N₁₁₋₃₆) was related to traffic emissions in urban school, while in the rural school was related with secondary formation of particles. Mean I/O ratios of BC and NP in the urban (0.54; 0.51) and rural (0.71; 0.91) schools, respectively, suggested that their higher concentrations occurred in outdoors. VOCs were higher indoor in urban (I/O = 1.97) and rural (I/O = 2.22) sites, indicating these pollutants are generated inside, regardless of urban or rural sites. These findings suggest the necessity of improving ventilation and commuting styles to lower the exposure of children to air pollutants in and around school environments.
Show more [+] Less [-]Effects of hypolimnetic oxygenation on fish tissue mercury in reservoirs near the new Almaden Mining District, California, USA
2021
Seelos, Mark | Beutel, Marc | Austin, Carrie M. | Wilkinson, Elisabeth | Leal, Clayton
Almaden, Calero, and Guadalupe reservoirs (San Jose, CA, USA) are small (<13 million m³) surface water reservoirs polluted by the former New Almaden Mining District, North America’s most productive historical mercury (Hg) mine. Stevens Creek Reservoir (Cupertino, CA, USA) also has elevated fish Hg concentrations, but no historical mining source. We report a 15-year dataset to evaluate the effectiveness of line diffuser hypolimnetic oxygenation systems (HOSs) in reducing methylmercury (MeHg) concentrations in reservoir water and fish after four consecutive years of operation. HOSs were installed in each reservoir to increase dissolved oxygen concentrations in bottom water, thereby suppressing the activity of anaerobic bacteria (e.g., sulfate-reducing bacteria) known to produce MeHg. Before HOS operation, MeHg concentrations increased in bottom waters of all four reservoirs during periods of thermal stratification and profundal hypoxia. MeHg concentrations decreased significantly in bottom waters during HOS operation, with mean reductions of 63%–85% below pre-oxygenation concentrations. However, MeHg concentrations were unchanged or increased in surface waters. This could be the result of enhanced mixing between surface and bottom waters as a result of line diffuser oxygenation, or continued Hg methylation occurring in the oxic water column and littoral sediments. Despite little change in whole water column MeHg concentrations, we observed modest but significant declining trends in fish tissue Hg in Guadalupe and Stevens Creek reservoirs. Results suggest that oxygenation, rather than directly lowering MeHg in water, may have mixed nutrients into surface waters, thereby enhancing primary productivity and indirectly affecting Hg bioaccumulation by diluting concentrations in phytoplankton.
Show more [+] Less [-]Birds feeding on tebuconazole treated seeds have reduced breeding output
2021
Lopez-Antia, Ana | Ortiz-Santaliestra, Manuel E. | Mougeot, François | Camarero, Pablo R. | Mateo, Rafael
Drilled seeds are an important food resource for many farmland birds but may pose a serious risk when treated with pesticides. Most compounds currently used as seed treatment in the EU have low acute toxicity but may still affect birds in a sub-chronic or chronic way, especially considering that the sowing season lasts several weeks or months, resulting in a long exposure period for birds. Tebuconazole is a triazole fungicide widely used in agriculture but its toxicity to birds remains largely unknown. Our aim was to test if a realistic scenario of exposure to tebuconazole treated seeds affected the survival and subsequent reproduction of the red-legged partridge (Alectoris rufa). We fed captive partridges with wheat seeds treated with 0%, 20% or 100% of tebuconazole application rate during 25 days in late winter (i.e. tebuconazole dietary doses were approximately 0.2 and 1.1 mg/kg bw/day). We studied treatment effects on the physiology (i.e. body weight, biochemistry, immunology, oxidative stress, coloration) and reproduction of partridges. Exposed birds did not reduce food consumption but presented reduced plasmatic concentrations of lipids (triglycerides at both exposure doses, cholesterol at high dose) and proteins (high dose). The coloration of the eye ring was also reduced in the low dose group. Exposure ended 60 days before the first egg was laid, but still affected reproductive output: hatching rate was reduced by 23% and brood size was 1.5 times smaller in the high dose group compared with controls. No significant reproductive effects were found in the low dose group. Our results point to the need to study the potential endocrine disruption mechanism of this fungicide with lagged effects on reproduction. Risk assessments for tebuconazole use as seed treatment should be revised in light of these reported effects on bird reproduction.
Show more [+] Less [-]Phosphorus compounds in the dissolved and particulate phases in urban rivers and a downstream eutrophic lake as analyzed using 31P NMR
2021
Hafuka, Akira | Tsubokawa, Yoichi | Shinohara, Ryuichiro | Kimura, Katsuki
Phosphorus (P) discharges from human activities result in eutrophication of lakes. We investigated whether the forms of phosphorus (P) in rivers with high effluent loads flowing through urban areas of Sapporo, Japan, were transformed when transported downstream into a eutrophic lake, namely Lake Barato. We hypothesized that the inorganic P supplied from the rivers might be transformed to organic forms in the lake. The results showed that soluble reactive phosphorus (SRP) and particulate inorganic phosphorus (PIP) dominated in the river discharge to the lake. Suspended solids in the rivers were rich in iron (Fe) so PIP was associated with Fe. A comparison of the concentrations at the river mouth and 4.5 km downstream showed that the concentrations of SRP and PIP were lower at 4.5 km downstream than at the river mouth, whereas the concentrations of organic P (i.e., dissolved organic phosphorus and particulate organic phosphorus) were similar. The results from solution ³¹P nuclear magnetic resonance spectroscopy of lake water showed that pyrophosphate was only present in the particulate fraction, while orthophosphate diesters (DNA-P) were only present in the dissolved fraction. Riverine samples contained orthophosphate (ortho-P) only, while lake samples contained ortho-P, orthophosphate monoesters, and DNA-P. The results suggest that the P forms, particularly those of dissolved P, shifted from inorganic to organic forms as the water was discharged from the river to the lake.
Show more [+] Less [-]Associations of urinary carbon disulfide metabolite with oxidative stress, plasma glucose and risk of diabetes among urban adults in China
2021
Xu, Tao | Wang, Bin | Wang, Xing | Yang, Shijie | Cao, Limin | Qiu, Weihong | Cheng, Man | Liu, Wei | Yu, Linling | Zhou, Min | Wang, Dongming | Ma, Jixuan | Chen, Weihong
Carbon disulfide (CS₂) has been reported to induce disorder of glucose metabolism. However, the associations of CS₂ exposure with plasma glucose levels and risk of diabetes have not been explored in general population, and the underlying mechanisms remain unclear. We aim to examine the relationships between CS₂ exposure and fasting plasma glucose (FPG) levels, as well as diabetes, and assess the potential role of oxidative stress among the abovementioned relationships in Chinese general adults. The concentrations of urinary biomarkers of CS₂ exposure (2-thiothiazolidin-4-carboxylic acid, TTCA), and biomarkers for lipid peroxidation (8-isoprostane, 8-iso-PGF₂α) and DNA oxidative damage (8-oxo-7,8-dihydro-20-deoxyguanosine, 8-OHdG) were measured among 3338 urban adults from the Wuhan-Zhuhai cohort. Additionally, FPG levels were tested promptly. Generalized linear models and logistic regression models were used to quantify the associations among urinary TTCA, oxidative damage markers, FPG levels and diabetes risk. Mediation analysis was employed to estimate the role of oxidative damage markers in the association between urinary TTCA and FPG levels. We discovered a significant relationship between urinary TTCA and FPG levels with regression coefficient of 0.080 (95% CI: 0.002,0.157). Besides, the risk of diabetes was positively related to urinary TTCA (OR:1.282, 95% CI: 1.055,1.558), particularly among those who did not exercise regularly. Each 1% increase of urinary TTCA concentration was associated with a 0.096% and 0.037% increase in urinary 8-iso-PGF₂α and 8-OHdG, respectively. Moreover, we found an upward trend of FPG level as urinary 8-iso-PGF₂α gradually increased (Pₜᵣₑₙd<0.05), and urinary 8-iso-PGF₂α mediated 21.12% of the urinary TTCA-associated FPG increment. Our findings indicated that urinary CS₂ metabolite was associated with increased FPG levels and diabetes risk in general population. Lipid peroxidation partly mediated the association of urinary CS₂ metabolite with FPG levels.
Show more [+] Less [-]Enhanced control of sulfonamide resistance genes and host bacteria during thermophilic aerobic composting of cow manure
2021
Sardar, Muhammad Fahad | Zhu, Changxiong | Geng, Bing | Huang, Yali | Abbasi, Bilawal | Zhang, Zhiguo | Song, Tingting | Li, Hongna
Traditional composting has already shown a certain effect in eliminating antibiotic residues, antibiotic-resistant bacteria (ARBs), and antibiotic resistance genes (ARGs). It is worth noting that the rebounding of ARGs and the succession of the bacterial community during conventional aerobic composting are still serious threats. Considering the probable risk, improved and adaptable technologies are urgently needed to control antibiotic resistance efficiently. This study monitored how thermophilic aerobic composting affected the ARGs, as well as the bacterial diversity during the composting of cow manure spiked with sulfamethoxazole (SMX) at different concentrations. Results showed that the degradation of SMX was enhanced during thermophilic aerobic composting (control > SMX25 > SMX50 > SMX100) and was no longer detected after 20 days of composting. High temperature or heat significantly stimulated the rebounding of certain genes. After 35 days, the abundance of detected genes (sul2, sulA, dfrA7, and dfrA1) significantly decreased (p < 0.05) in control and antibiotic-spiked treatments, except for sul1. The addition of three concentrations of SMX elicited a sharp effect on bacterial diversity, and microbial structure in SMX25 led to significant differences with others (p < 0.05). The network analysis revealed more rigorous interactions among ARGs and abundant genera, suggesting that the host of ARGs potentially increased at low concentrations of SMX. Especially, genera g_norank_f__Beggiatoaceae, Ruminiclostridium, Caldicoprobacter, g_norank_o_MBA03, Hydrogenispora, and Ruminiclostridium_1 were major potential hosts for sul1. In conclusion, the rebounding of ARGs could be intermitted partially, and more efficient control of antibiotic resistance could be achieved in the thermophilic composting compared to conventional methods.
Show more [+] Less [-]Moxidectin toxicity to zebrafish embryos: Bioaccumulation and biomarker responses
2021
Muniz, Marta Silva | Halbach, Katharina | Alves Araruna, Igor Cauê | Martins, Rafael Xavier | Seiwert, Bettina | Lechtenfeld, Oliver | Reemtsma, Thorsten | Farias, Davi
Moxidectin is an antiparasitic drug belonging to the class of the macrocyclic lactones, subgroup mylbemicins. It is used worldwide in veterinary practice, but little is known about its potential environmental risks. Thus, we used the zebrafish embryo as a model system to study the potential effects of moxidectin on aquatic non-target organisms. The analyses were performed in two experimental sets: (1) acute toxicity and apical endpoints were characterized, with biomarker assays providing information on the activity levels of catalase (CAT), glutathione S-transferase (GST), lactate dehydrogenase (LDH), and acetylcholinesterase (AChE); and (2) internal concentration and spatial distribution of moxidectin were determined using ultraperformance liquid chromatography quadrupole-time-of-flight mass spectrometry (UPLC-QToF-MS) and matrix-assisted laser desorption/ionization-MS imaging (MALDI-MSi). The acute toxicity to zebrafish embryos (96 hpf) appeared mainly as a decrease in hatching rates (EC₅₀ = 20.75 μg/L). It also altered the enzymatic activity of biomarker enzymes related to xenobiotic processing, anaerobic metabolism, and oxidative stress (GST, LDH, and CAT, respectively) and strongly accumulated in the embryos, as internal concentrations were 4 orders of magnitude higher than those detected in exposure solutions. MALDI-MSi revealed accumulations of the drug mainly in the head and eyes of the embryos (72 and 96 hpf). Thus, our results show that exposure to moxidectin decreases hatching success by 96 h and alters biochemical parameters in the early life stages of zebrafish while accumulating in the head and eye regions of the animals, demonstrating the need to prioritize this compound for environmental studies.
Show more [+] Less [-]Environment permissible concentrations of glyphosate in drinking water can influence the fate of neural stem cells from the subventricular zone of the postnatal mouse
2021
Masood, Muhammad Irfan | Naseem, Mahrukh | Warda, Salam A. | Tapia-Laliena, María Ángeles | Rehman, Habib ur | Nasim, Muhammad Jawad | Schäfer, Karl Herbert
The developing nervous system is highly vulnerable to environmental toxicants especially pesticides. Glyphosate pesticide induces neurotoxicity both in humans and rodents, but so far only when exposed to higher concentrations. A few studies, however, have also reported the risk of general toxicity of glyphosate at concentrations comparable to allowable limits set up by environmental protection authorities. In vitro data regarding glyphosate neurotoxicity at concentrations comparable to maximum permissible concentrations in drinking water is lacking. In the present study, we established an in vitro assay based upon neural stem cells (NSCs) from the subventricular zone of the postnatal mouse to decipher the effects of two maximum permissible concentrations of glyphosate in drinking water on the basic neurogenesis processes. Our results demonstrated that maximum permissible concentrations of glyphosate recognized by environmental protection authorities significantly reduced the cell migration and differentiation of NSCs as demonstrated by the downregulation of the expression levels of the neuronal ß-tubulin III and the astrocytic S100B genes. The expression of the cytoprotective gene CYP1A1 was downregulated whilst the expression of oxidative stresses indicator gene SOD1 was upregulated. The concentration comparable to non-toxic human plasma concentration significantly induced cytotoxicity and activated Ca²⁺ signalling in the differentiated culture. Our findings demonstrated that the permissible concentrations of glyphosate in drinking water recognized by environmental protection authorities are capable of inducing neurotoxicity in the developing nervous system.
Show more [+] Less [-]Litterfall mercury reduction on a subtropical evergreen broadleaf forest floor revealed by multi-element isotopes
2021
Lu, Zhiyun | Yuan, Wei | Luo, Kang | Wang, Xun
Litterfall mercury (Hg) deposition is the dominant source of soil Hg in forests. Identifying reduction processes and tracking the fate of legacy Hg on forest floor are challenging tasks. Interplays between isotopes of carbon (C) and nitrogen (N) may shed some lights on Hg biogeochemical processes because their biogeochemical cycling closely links with organic matters. Isotope measurements at the evergreen broadleaf forest floor at Mt. Ailao (Mountain Ailao) display that δ²⁰²Hg and Δ¹⁹⁹Hg both significantly correlate with δ¹³C and δ¹⁵N in soil profiles. Data analysis results show that microbial reduction is the dominant process for the distinct δ²⁰²Hg shift (up to ∼1.0‰) between Oi and 0–10 cm surface mineral soil, and dark abiotic organic matter reduction is the main cause for the Δ¹⁹⁹Hg shift (∼-0.18‰). Higher N in foliage leads to greater Hg concentration, and Hg⁰ re-emission via microbial reduction on forest floor is likely linked to N release and immobilization on forest floor. We thus suggest that the enhanced N deposition in global forest ecosystems can potentially influence Hg uptake by vegetation and litter Hg sequestration on forest floor.
Show more [+] Less [-]