Refine search
Results 91-100 of 168
Incinerated Sewage Sludge Products as Amendments for Agricultural Soils: Leaching and Plant Uptake of Trace Elements
2006
(Aruṇakiri)
Preliminary leaching column and greenhouse plant uptake studies were conducted in two soils with contrasting characteristics amended with varying rates (0 to 148.3 Mg ha-1) of incinerated sewage sludge (ISS) and weathered sewage sludge (WISS) to estimate the leaching losses of trace elements from the soils amended with incinerated sewage sludge by products and to evaluate the uptake and accumulation of these elements in various parts of Sorghum vulgaris var. sudanense Hitche. (“Sorgrass''), a Sorghum-Sudan grass hybrid. Results of this study indicated that leaching of Cr, Cd, Zn, Cu, Ni, Fe and Mn from soils amended with ISS and WISS increased with increasing rates of amendment. Results of the leaching column study further revealed greater leaching losses from coarse-textured soil compared to medium-textured soil and also from ISS amended soils than with WISS amended soils. Results further suggested that the type of element and the interaction between the element and soil properties affected the leachability of various trace elements. The uptake study indicated uptake and accumulation of trace elements by plant parts increased with increasing rates of amendments. Greater plant uptake and accumulation of trace elements were observed in plant parts grown in soils amended with ISS compared to that of WISS. Results also indicated a greater accumulation of trace elements in below ground part of the plants (roots) compared to that was observed in above ground parts (shoots). Limited data obtained from this one season preliminary studies demonstrated that incinerated sewage sludge products from wastewater treatment plants could be used as soil amendments at low application (no more than 24.7 Mg ha-1) for optimum plant growth, and dry matter yield without resulting in substantial accumulation of metals in plant parts at concentrations above the recommended critical limits and without causing significant leaching losses of various trace elements. It is imperative that long-term field studies are necessary to evaluate the long-term impact of using these new products in leaching and accumulation of various trace elements in plants and soils.
Show more [+] Less [-]Distribution of Redox-sensitive Elements in Bottom Waters, Porewaters and Sediments of Rogoznica Lake (Croatia) in Both Oxic and Anoxic Conditions
2006
Ciglenečki, Irena | Pichler, Srđan | Prohic, Esad | Ćosović, Božena
Geochemical, mineralogical and sedimentological analyses were carried out to contrast two different sites (respectively characterized by permanently oxic and anoxic conditions) in a small, meromictic, seawater lake. In fact, due to relatively high organic matter content, and reduced water exchange, the Rogoznica Lake has almost permanent anoxic conditions below the depth of 12 m, where sediment can be considered an anoxic-sulphidic sedimentary environment. Different water column and sediments redox conditions affect the distribution and speciation of major redox-sensitive metals (Fe, Mn, Mo), reduced sulphur species (RSS) and dissolved organic C (DOC). Trace metals, especially those that accumulate in anoxic-sulphidic environments (Fe, Mo) showed a marked enrichment in the solid phase, whereas the low solubility of sulphides leads to low porewater concentrations. The relatively high sedimentary enrichment of Mo (up to 81 mg/kg) also confirms highly anoxic conditions within the Rogoznica Lake sediments. Results clearly show that chemical species within the sediments will tend towards equilibrium between porewater and solid phase according the prevailing environment conditions such as redox, pH, salinity, DOC.
Show more [+] Less [-]Efficiency of Pedotransfer Functions Describing Cadmium Sorption In Soils
2006
Horn, Al | Reiher, W. | DaRing, R.A. | Gath, S.
Pedotransfer functions based on general purpose Freundlich isotherms (GPF) were derived for Cd using different combinations of input variables or development conditions. The models match the criterion of flexibility as they were derived from data of 497 soil samples, which had strongly varying soil characteristics. The prediction efficiency of the approaches was investigated by comparison of measured and simulated sorption data for 124 independent soil samples. The parameterisation of the GPF shows that models derived from data of batch sorption experiments by multiple linear regression achieve best goodness-of-fit and statistical consistency. The use of extraction data or nonlinear regression analysis results in greater deviations from the statistical optima. The best overall performance considering parameterisation and validation was observed for the models including (a) the variables 'proton activity', 'clay content', 'soil organic carbon', 'sum of dithionite-extractable Fe- and Mn-oxides' or (b) the variables 'proton activity', 'potential cation exchange capacity', 'sum of dithionite-extractable Fe- and Mn-oxides'.
Show more [+] Less [-]Chemometric analysis of hydro-chemical data of an alluvial river - a case study
2006
Singh, K.P. | Malik, A. | Singh, V.K.
Hydrochemistry of an alluvial river was investigated employing the chemometric techniques such as cluster analysis (CA), principal component analysis (PCA), discriminant analysis (DA) and partial least square (PLS) with a view to extract information about the variables responsible for spatial and temporal variations in river hydrochemistry and water quality, the hidden factors explaining the structure of the hydro-chemical database of the river, factors/processes influencing the river hydro-chemistry. Analysis of spearman's correlation coefficient revealed non-significant correlation of the pollution indicator (BOD, COD, SO₄, F, NH₄-N, NO₃-N) variables with season and significant correlation with site, indicating contribution of the site-specific anthropogenic sources in the catchments. Spatial CA clustered the monitoring sites (10nos.) into three groups of relatively non-polluted sites, moderately polluted sites, and highly polluted sites. Temporal CA differentiated among the samples of monsoon and non-monsoon months. PCA rendered considerable data reduction, in terms of eight parameters explaining about 71% of the total variance and evolved six PCs. PCA grouped samples belonging to different seasons and sites distinctly correlating them with natural and anthropogenic variables. Temporal and spatial DA rendered 97 and 92% correct assignations of the samples, respectively, and revealed that temperature, pH, BOD, DO, alkalinity and Ca are the most significant variables to discriminate between the different seasons and account for most of the expected temporal variations in hydrochemistry of the river, whereas, hardness, DO, BOD, COD, Ca and Mg were the most significant discriminating variables in space. Spatial and temporal groupings of the samples were successfully achieved through PLS modeling. PLS showed that the summer season samples are dominated by PO₄, TDS, F, K, COD, BOD, Na, Cl, hardness and alkalinity, whereas, samples of winter season by DO, pH, NH₄-N and coliforms. Furthermore, PLS indicated site-specific dominance of anthropogenic contaminants suggesting for their pollution sources in the corresponding catchments of these sites.
Show more [+] Less [-]Microbial Removal of Arsenic
2006
Jahan, Kauser | Mosto, Patricia | Mattson, Crystal | Frey, Erin | Derchak, Lara
Bangladesh is currently the subject of the world's largest mass arsenic poisoning in history. Groundwater throughout Bangladesh and West Bengal is contaminated with naturally occurring arsenic from the alluvial and deltaic sediments that form the region's aquifers. It has been estimated that 75 million people are at risk of developing health effects associated with the ingestion of arsenic. This project focuses on the use of microorganisms such as bacteria and algae to remove arsenic from water. Arsenic in the arsenite form was used in the studies. Experiments were conducted with a common alga and wastewater bacteria. A common green algae Scenedesmus abundans was used for determining arsenic uptake in batch experiments. Results of the experiments indicated that the algae biosorption could be modeled by the conventional Langmuir isotherm model. Algae morphology studies indicated that the algae cells were impacted due to the presence of arsenic as evidenced by clumping or loss of cell clusters. The wastewater bacteria also were capable of high percent of arsenic removal. Results indicate that microbial uptake of arsenic may be a viable method of pretreatment of arsenic contaminated water. However algae and sludge disposal would pose a problem and will have to be dealt with accordingly.
Show more [+] Less [-]Relationship Between the Sediment Geochemistry and Phosphorus Fluxes in a Great Lakes Coastal Marsh, Cootes Paradise, ON, Canada
2006
Mayer, T | Rosa, F | Mayer, R | Charlton, M
Cootes Paradise is a coastal wetland, adjacent to Hamilton Harbour at the western tip of Lake Ontario. The marsh has been considerably degraded due to the excessive sediment and nutrient input from sewage treatment plants (STPs), marsh tributaries and Combined Sewer Overflows (CSOs). Although there has been reduction in nutrient loadings from external sources, high nutrient levels, and a prolific algal growth remain a problem in Cootes Paradise. To assess the importance of external versus internal nutrient loadings to the marsh, nutrient fluxes from sediments were estimated using porewater profiles at three locations from 2001 and five additional sites from 2002. The fluxes varied between 0.27 and 5.25 mg P m-² day-¹, with sites receiving outfalls of STP and CSO having highest fluxes (~5 mg P m-² day-¹). Mean phosphorus release rate of 2.02 mg P m-² day-¹ was calculated from the spatial distribution of the non-apatite inorganic phosphorus (NAI-P) in sediments, employing a relationship between the NAI-P and P fluxes. The results confirm that sediment P geochemistry is important in regulating the P pool in porewater which, consequently, governs the P fluxes from sediments.
Show more [+] Less [-]Root Exudates Impact on Phenanthrene Availability
2006
Ouvrard, S | Lapole, D | Morel, J. L
In order to improve and optimize phytoremediation of PAH we propose to focus on the rhizospheric processes controlling PAH degradation. In this paper the effect of root exudates on PAH availability is studied. Model organic compounds (malic acid, malonic acid and EDTA) representing root exudates have been tested for their effect on phenanthrene sorption on a reference non polluted agricultural soil material. Phenanthrene adsorption isotherms were first obtained with batch experiments. Results showed linear isotherms and phenanthrene sorption was enhanced as the concentration of organic compounds in the solution increased. Column leaching experiments were then used to simulate the effect of root exudation following the soil pollution. Inlet solutions containing the different organic acids used were flowed through the column containing the artificially polluted soil material. Elution curves showed that the phenanthrene was less easily eluted when the solution injected contained the organic acids. However, magnitude of the phenomena did not fit with adsorption constants obtained in batch experiments. Phenanthrene desorption appeared limited by sequestration but organic acids seemed able to partially disturb the soil material structure to limit the sequestration effect.
Show more [+] Less [-]Sedimentary Record of Polycyclic Aromatic Hydrocarbons in the Gulf of Trieste (Northern Adriatic Sea)
2006
Heath, Ester | Ogrinc, Nives | Faganeli, Jadran | Covelli, Stefano
To reconstruct a history of polycyclic aromatic hydrocarbon (PAH) pollution in the Gulf of Trieste, one of the largest urbanized areas in the Adriatic Sea, we analyzed three long sediment cores collected between 1996 and 1997. Concentrations of total PAHs, the sum of 16 PAH compounds and six of their methylated analogues, in all three cores show a decrease from 600-800 ng g-¹, at the surface, to levels below 250 ng g-¹ in deepest layers (down to 3 m). The same trend was shown with separate representative pyrogenic PAHs (pyrene, benzofluoranthene and phenanthrene). Using Hg as a recent geochronological tracer, we observe an increasing input of PAHs since the beginning of the 20th Century and, especially, after the Second World War coinciding with increasing industrialization and urbanization of the region. This correlation is supported by PAH ratios that are indication of combustion processes and represent a marker for anthropogenic inputs. No correlation exists between PAHs and black carbon within the core profiles, indicating two different fractions of the 'black carbon continuum'.
Show more [+] Less [-]Changes in Sediment Sources following Wildfire in Mountainous Terrain: A Paired-Catchment Approach, British Columbia, Canada
2006
Owens, Philip N | Blake, William H | Petticrew, Ellen L
This paper describes a study examining the potential of mineral magnetic, geochemical and organic properties to determine if a 2003 wildfire in a catchment in British Columbia, Canada, caused a change in the sources of the suspended sediment transported in the channel relative to a nearby unburnt (reference) catchment. The results show that some of the properties offer the potential to determine sediment sources in the unburnt catchment. However, the 2003 wildfire modified the concentrations of some properties and this can either compromise or enhance their ability as tracers in the burnt catchment. At present, the source tracing results are inconclusive. This has implications for the use of certain properties as fingerprints and raises important issues about approaches to sediment source identification.
Show more [+] Less [-]Soil Biological Activities in Monitoring the Bioremediation of Diesel Oil-Contaminated Soil
2006
Riffaldi, R. | Levi-Minzi, R. | Cardelli, R. | Palumbo, S. | Saviozzi, A.
The effects of two different biological treatments on hydrocarbon degradation and on soil biological activities were determined during a 100-d incubation period. An evaluation of soil biological activities as a monitoring instrument for the decontamination process of diesel-oil contaminated soil was made using measurements of organic carbon content, soil microbial respiration, soil ATP and dehydrogenase, β-glucosidase, lipase enzyme activities. Five samples were used: S (control, uncontaminated soil), CS (contaminated soil), SCS (sterilized contaminated soil), CFS (contaminated soil plus N and P), CCS (contaminated soil plus compost). The relationships between soil parameters and the levels of total petroleum hydrocarbons (TPH) residues were investigated. Results showed that inorganic nutrients NP and compost stimulated hydrocarbon biodegradation but not all biological activities to a significant extent. The residual hydrocarbon trend was positively related with that of the organic C content, microbial respiration and with β-glucosydase activity, while both soil lipase and dehydrogenase activities were negatively related with the hydrocarbon trend. Lipase activity was found to be the most useful parameter for testing hydrocarbon degradation in soil.
Show more [+] Less [-]