Refine search
Results 91-100 of 558
Assessment of Environmental Hazard and Heavy Metal Contamination in Dhaleshwari River Sediment: A Toxicity based Study on Pollution Full text
2023
Islam, Md. Al Sadikul | Hossain, Mohammad Enayet | Nahar, Kamrun | Majed, Nehreen
Developing nations, such as Bangladesh, face an enormous crisis in maintaining natural sustainability due to heavy metal contamination by the peripheral rivers. Frequent heavy metals discharged from tanneries, dyeing, and potential anthropogenic activities in Savar city pollute the Dhaleshwari river, which is an important river of the capital city, Dhaka. The present study aimed to assess the heavy metals contamination in the Dhaleshwari river sediment and evaluate the subsequent ecological risk indices emerging from the deposits. The contamination levels of heavy metals such as lead (Pb), cadmium (Cd), chromium (Cr), and nickel (Ni) were analyzed in the Dhaleshwari River sediment. Various environmental indices, such as Potential Enrichment Risk (PER), Geo-accumulation Index (Igeo), Enrichment factor (EF), Toxic unit analysis (TUs), etc., were observed in various compartments. The concentration of heavy metals ranged as follows: Lead (Pb), 297.3-414.6 mg/L; Cadmium (Cd), 1.5-4.4 mg/L; chromium (Cr), 97.9 -282.4 mg/L; Nickle (Ni), 85.1-264.5 mg/L; Iron (Fe), 11800-14375 mg/L. The metal concentrations were higher than the threshold effect level (TEL) and probable effect level (PEL) standards. Based on the TUs, the probability of toxicity is about 76% (TU > 2.3) at the Dhaleshwari river. Comparative evaluation of different environmental indices between present and past studies indicated progressive deterioration of sediments by heavy metals. Linear correlations of heavy metals in sediment samples demonstrated toxic accumulation of heavy metals in the surrounding ecosystem. The study outcomes emphasize the necessity of systematic investigation in the Dhaleshwari river and warranting effective prioritization to ensure river health over industrial wastewater discharge.
Show more [+] Less [-]The Rhizospheric Soil of Sparganium erectum L. Plant: A new Source of Efficient Bacteria for Azo Dye Decolorization Full text
2023
Nikkhah, Masoumeh | Pourbabaei, Ahmad Ali | Shariati, Shayan | Shakiba, Mina
The purpose of our study was to identify the native bacteria with the ability to degrade azo dyes from the rhizosphere of Sparganium erectum L., and Typha latifolia L. plants that were grown on a drain of a textile mill. Eight and one strain with decolorization ability of Cibacron Brilliant Red EB and Terasil Red 3BL-01 were isolated from the saline rhizosphere of Sparganium erectum L. and latifolia L. plant respectively. Results showed that the bacteria isolated from the rhizosphere of Sparganium erectum L. are more capable of decolorizing azo dyes. Based on the 16S rRNA sequencing, selected strains were identified as follows: Enterobacter ludwigii strain SNP3 (OL719291), Rhodococcus fascians strain SNP5 (OL759129), Pseudomonas aeruginosa strain SNP10 (OL759126), and Bacillus safensis strain SNP13 (OL759127). The results of azo dyes biodegradation tests revealed that strains SNP10, SNP3, and SNP5 were more capable of decolorizing 94-97%, 72.53-73.8, 72.53%, and 71.13-73.5% of Cibacron Brilliant Red EB at concentration 10-20 mg/L within 72 h, respectively. Besides, strain SNP13 was the fastest strain in decolorization of Cibacron Brilliant Red EB with 68% and 59% decolorization activity at 10 and 20 mg/L respectively (24 h). Only strains SNP3 and SNP13 could decolorize 83% and 77% of Terasil Red 3BL-01 (30 mg/L), respectively. For the first time, our research findings illustrated that indigenous rhizospheric bacterial strains isolated from Sparganium erectum L. plants have the potential to apply as an azo dye breakdown tool in textile effluent treatment or other ecosystems.
Show more [+] Less [-]Assessment of Concentration and Distribution of Contaminants Using Magnetic Susceptibility Measurements Full text
2023
Anis, Naushi | Kumar, Arun | Arya, Ajay
Magnetic properties are used throughout the world to measure the concentration of (ferri) magnetic minerals in soil, sediment and dust. These minerals in soil come from a variety of sources, including air-borne particulate pollution, parent rock and paedogenesis. Changes in the content of magnetic minerals, as well as their spatial and vertical distribution in soil profiles are caused by human activity. Magnetic minerals are distinguished by their affinity for other elements found in soil, such as heavy metal. As a result, magnetic susceptibility has been widely used as an approximation of heavy metal contamination in soil. The current study was conducted in a tropical deciduous forest in Central Uttar Pradesh, namely the kukrail reserve forest in Lucknow to assess heavy metal contamination levels caused by various anthropogenic activities and to confirm the utility of using MS surveying in these types of studies. The current study was conducted at two sites viz. agricultural area and forest area because these sites are the most contaminated ones. Significant correlation between heavy metal concentration and magnetic susceptibility with p<0.005 is noticed for Co, Cr, Pb, Zn, Cu and Fe of agricultural area. Similarly in forest area significant correlation exists between Cr, Ni, Pb and Zn. The χLF values show a significant correlation with the concentration of heavy metals except for Cu and Cr in forest area and Pb and Zn in agricultural area. In comparison to the methodologies of chemical analysis, the χLF measurement techniques provide us with lower cost and less time consuming method for identification of possible soil pollution.
Show more [+] Less [-]Greening of brick and tile production: an index to evaluate its environmental performance Full text
2023
Oliveira, Leandro | Rebelato, Marcelo | Saran, Luciana
This work presents an index to evaluate the environmental performance of brick and tile manufacturing. The steps used were: 1) process study; 2) waste analysis; 3) determination of the potential impact of waste; 4) normalization of the potential impact; 5) comparative weighting among the potentials; 6) creation of the index. The index considers three parameters: the amount of waste produced, the disposal of waste, and the spatial dispersion of waste. The index was called CIRI (Ceramic Industry Rating Index) and was tested in a ceramic company. The field application showed that the waste that offered the highest environmental impact were gases generated from the burning of chips (30.850%), ashes generated from the burning of chips (30.483%), and steel drums (28.937%), which total of 90.27%. The CIRI index was 28.732%, which shows bad waste management. In view of the findings, two points must be considered: 1) the impacts generated by gaseous could be mitigated by companies by using technologies for drying tiles and bricks with a lower level of environmental impact; 2) entrepreneurs should be concerned about the fate given to the ashes because the dispose practiced is not environmentally correct. The index is useful for assessing the environmental impact of the brick and tile industry. It is useful for managers insofar as a proposal for process improvements. The novelty of this study lies in the index developed, which was designed to consider: the potential for environmental impact, the amount of waste, the spatial coverage, and the adequacy of waste disposal.
Show more [+] Less [-]Life Cycle Assessment of Crude Oil Processing by Energy Management Approach Full text
2023
Naseri, kioumars | Noorpoor, Alireza | Razavian, Fatemeh | Khoshmaneshzadeh, Behnoush
The first future challenge facing human beings is to supply the world's energy needs. However, energy consumption and resource depletion in industrial processes are significantly increasing. Therefore, life cycle assessment can be an excellent tool to quantify resources and energy consumption in different parts of industrial processes. The combination of process simulation and assessment of process life cycle can be resources & energy consumption in different parts is quantified and can be significantly reduced by optimizing the process, energy wastage. The process stimulation is done by HYSIS software, then by collecting output data, energy and materials flow, life cycle assessment is conducted using SIMAPRO software. According to output of the release list, 1709 items are released into the environment, of which 396, 407, 340 items are released into the air, water, soil, respectively and 556 items are extracted from sources. The most appropriate procedure to assess the life cycle of crude oil processing is Cumulative Energy Demand and Cumulative Exergy Demand energy approach. Based on the first-order analysis, the highest consumption of resources and energy is in the crude oil transmission sector; (Road construction with 44.95 petajoules and transmission pipelines with 19.85 petajoules). Also, regarding the second-order analysis, the highest consumption of resources and energy is related to crude oil production processes with 1.65 petajoules per operation and desalination unit, medium voltage electricity consumption with 0.002194 petajoules and exergy of power lines with 0.00087 petajoules.
Show more [+] Less [-]Interspecies Peculiarities of Biomarkers Response of Marine Fish Embryos to Oil Pollution Full text
2023
Rudneva, Irina
Shelf areas of the seas and oceans characterizing high productivity are the spawning sites of many aquatic organisms. However, they are strong impacted for anthropogenic pollution, including oil contamination, which negatively influence on marine organisms. The effects of mazut and diesel fuel in the concentrations of 0.05, 0.1 and 0.2 ml/l on the activity of antioxidant enzymes which are recognized as biomarkers of the oxidative stress namely superoxide dismutase (SOD), catalase (CAT), peroxidase (PER) and glutathione reductase (GR) in the developing embryos of two marine blennies Parablennius sanguinolentus and Salaria pavo (Perciformes: Blenniidae) on the V - VI developmental stages were studied. The results demonstrated higher mazut toxicity as compared with diesel fuel. In P. sanguinolentus embryos exposed to mazut the activity of key anti-oxidant enzymes SOD and CAT were significantly higher (+413% and +100% as compared with the control, p<0.05), while in the case of diesel fuel the enzymes level varied insignificantly. In the embryos of S. pavo SOD and CAT activities were also increased at mazut incubation (256% and 103% respectively, p<0.05), while the differences between enzymes level in embryos exposed to diesel fuel were lower. In contaminated S. pavo embryos enzyme activities varied less as compared with the embryos of P. sanguinolentus, therefore they are more resistant and adaptive to oil contamination. The possible mechanisms of fish embryos antioxidant system response to oil pollution are discussed.
Show more [+] Less [-]Review on Naphthenic Acids: An Important Environmental Pollutants Caused by Oil Extraction and Industries Full text
2023
Sotoudeh, Yaser | Niksokhan, Mohammad Hossein | Karbassi, Abdolreza | Sarafrazi, Mohammad Reza
Naphthenic acids are a group of polar organic carboxylic acids that are present in crude oil naturally. They are cycloaliphatic carboxylic acids which have 10 to 16 carbons, which gained importance since the early twentieth century because of corrosion in oil refineries. Moreover, they are the most important environmental pollutants caused by oil extraction from oil sand reserves. Heavy crude oils which have high concentration of naphthenic acids are usually considered as poor-quality oil and sold at a lower price. Often, the high concentration of naphthenic acids in crude oil reduces the life of the equipment which are used in the exploration and refining process because of corrosion. Hence, researchers are increasingly interested in the chemical properties of naphthenic acids and the acidic components of the crude oils. The most popular methods for the identification and analysis of naphthenic acids are liquid and gas chromatography (GC), liquid-liquid extraction, Fourier transform infrared spectroscopy (FTIR), and solid-phase extraction (SPE). Naphthenic acids are the most important environmental pollutants caused by oil extraction from oil sand reserves. Previous studies have revealed that naphthenic acids can be absorbed by fish, but their distribution in different tissues of fish has not been specified. Experimental samples showed the highest toxicity to fish, while there was less toxicity to invertebrates and algae. Moreover, naphthenates have various industrial utilizations; they are used in synthetic detergents, corrosion inhibitors, lubricants, fuel and oil additives, wood preservatives, insecticides, fungicides, pesticides, wetting agents, napalm thickening agents, and oil desiccants that are utilized in painting and treating wood surfaces.
Show more [+] Less [-]Ecological and Health Risk Assessment of Trace Metals in Waters from North-West Zone of Akwa Ibom State, Nigeria Full text
2023
Effiong Jonah, Udeme | Friday Mendie, Cecilia | Greogry Asuquo, Uwemmay
Metals contamination in water is becoming a threat to human health. The studies ecological and health risk assessment of trace metals was conducted in seven water bodies in Akwa Ibom State, between May 2021 and April 2022 (twelve months), to evaluate the levels of trace metals contaminant and suitability of the waters for human consumption. Six trace metals were assessed in the water samples; using atomic absorption spectrophotometer after digestion. Pollution indices such as heavy metal pollution index, comprehensive pollution index, contamination index and health risk assessment for non-carcinogenic were employed. The findings were compared with Nigerian Standard for Drinking Water Quality. The mean concentration of some metals (Pb, Cd, Cr, and Cu) in some stations were exceeded the standard limits, while Fe and Ni exceeded the acceptable limits in all the stations, due to anthropogenic activities. The values for HPI in stations I, II, IV and VII were exceeded the threshold of 100, ranging between 61.4 and 743.5; CPI ranged from 1.05 to 3.72, while Cd ranged from 0.94 to 16.3, indicated that the water bodies are highly contaminated. The CDI and HQ values for Fe, Cd, Cr and Cu exceeded the oral toxicity reference dosage of contaminant and stipulated threshold (1) for HI in some stations both in children and adult, indicated that the water bodies are not suitable for human consumption. The findings call for concern regarding their effects on human health, which could be detrimental to the people drinking from these water.
Show more [+] Less [-]The content of toxic elements in soil-plant system based on ombrotrophic peat with the copper smelting slag recycling waste Full text
2023
Zolotova, Ekaterina | Kotelnikova, Alla | Ryabinin, Viktor
Mining wastes occupy huge areas around the world, therefore, research aimed at their disposal and reclamation of disturbed territories is very relevant. We studied artificial soil based on neutralized ombrotrophic peat (Histosols Fibric) with different content (5% and 10% by weight) of copper smelting slag recycling waste ("technical sand"): finely dispersed (less than 0.05 mm), mechanically activated material. We analyzed the content of toxic element in peat, underground and aboveground parts of lawn grasses and potatoes. The coefficients of concentration and accumulation of elements were calculated. It was found that the introduction of 5% waste leads to exceeding the maximum permissible concentrations and approximately permissible concentrations (the regulated values for Russia) for zinc, copper, arsenic, antimony, and lead. The molybdenum content exceeds the Soil Quality Guidelines accepted in Canada, for selenium the values are at the limit level. The content of zinc, copper, cobalt, arsenic, molybdenum, antimony is significantly reduced (by 2-3 times) during the growing season. Ecological assessment of agricultural plants grown on artificial soil with 5% of "technical sand" showed that there are no excesses of the maximum permissible levels for any regulated element for potato tubers; a slight excess of arsenic was detected for lawn grasses. We additionally assessed the safety of potato tubers using the maximum permissible concentrations for food and established an excess of cadmium (3.4 times on the peat, with the addition of waste almost unchanged) and zinc (1.6 times on peat, 2.8 times for a peat with 10% waste).
Show more [+] Less [-]Comparison of IAQ Standards in Healthcare Facilities with the aim of providing acceptable Standards in Iran Full text
2023
Farhadi, Forough | Khakzand, Mehdi | Khanmohammadi, MohammadAli | Barzegar, Zahra
Indoor air quality (IAQ) is a significant concern that affects comfort and health. It is well understood that hospitals are thermal environments in which comfort must be calibrated. This comparative study examined existing international standards of IAQ in Iranian health care facilities. A systematic review of studies on IAQ standards was conducted to test the hypothesis regarding which parameters, and at what level, can have an impact on hospital IAQ: EPA, ASHRAE, LEED, BREEAM, NIOSH, OSHA, WHO, ACGIH, Canadian, and OEL. The inclusion criteria were met by 34 of the 1886 studies that were screened from 2010-2021. The findings of the selected studies were classified into four categories for analysis: monitoring of IAQ according to standards (n=34), IAQ in healthcare facilities (n=1), impact of air pollution on human health (n=9), and interventions to improve IAQ (n=1). Based on these IAQ standards, the acceptable limit for CO2 6300 *10³ µg/m³, for CO 9000 µg/m³, for Formaldehyde 19 µg/m³, for NO2 37 µg/m³, for O3 98 µg/m³, for PM2.5 0.1 µg/m³, for PM10 10 µg/m, and for SO2 31 µg/m³ was suggested. The majority of studies conducted monitoring of pollutants in indoor environments used for homes and schools, with the majority of them relying on WHO IAQ standards. CO, PM, and NO2 concentrations have been the most studied and have the longest track record of research. The acceptable limit for IAQ parameters was proposed.
Show more [+] Less [-]