Refine search
Results 901-910 of 1,310
Vulnerability of Coastal Aquifers Due to Nutrient Pollution from Agriculture: Kalpitiya, Sri Lanka Full text
2011
Jayasingha, Pathmakumara | Pitawala, A. | Dharmagunawardhane, H. A.
This study focuses on spatial and temporal nutrient pollution of groundwater in the unconfined sandy aquifers of Kalpitiya peninsula, Sri Lanka, where agricultural activities are intense. The study covers two consecutive dry and rainy seasons during the period from 2008 to 2010. Nitrate is the dominant nutrient pollutant in groundwater. The values of Nitrate-N contents ranged from 0.60 to 212.40 mg/L in the dry seasons and 0.20–148.50 mg/L in rainy seasons. Phosphate in groundwater ranged from 0.20 to 5.70 mg/L in dry seasons and 0.04–10.35 mg/L with few exceptions in rainy seasons. About 50% of the studied water samples had Nitrate-N concentrations above WHO drinking water guideline values both in dry and rainy periods. These high concentrations were recorded from wells in agricultural lands. Although there is a slight decrease in the Nitrate-N concentrations at random in rainy seasons, an increasing trend of average concentrations became evident over the study period as a whole, probably indicating building up of Nitrate-N in groundwater in the vegetable growing areas. The spatial distribution of Nitrate-N too shows a good match of high Nitrate-N bearing zones with vegetable cultivated areas indicating intensive leaching from application of excessive chemical fertilizers. High Nitrate-N zones also showed fairly steady lateral distribution indicating slow lateral mobility of Nitrate-rich groundwater probably due to low hydraulic gradients. Low phosphate concentrations in both groundwater and surface soils either indicates their less use in the area or that the available phosphate is leached and removed from the aquifer water and (sandy) soil solutions and probably adsorbed in clayey deeper horizons. Low concentrations of major cations (especially K, Ca, and Na) indicate less impact on cation concentrations in groundwater by the fertilizer application or sea water intrusions/up-coning.
Show more [+] Less [-]Cinnamaldehyde Induces PCD-Like Death of Microcystis aeruginosa via Reactive Oxygen Species Full text
2011
Hu, Liang Bin | Zhou, Wei | Yang, Jing Dong | Chen, Jian | Yin, Yu Fen | Shi, Zhi Qi
In recent years, Microcystis bloom occurs frequently and causes a wide range of social, environmental, and economic problems. In this study, dose-dependent inhibitory effect of cinnamaldehyde on the growth of Microcystis aeruginosa was investigated. It was found that cinnamaldehyde with the concentration more than 0.6 mM showed algicide activity against M. aeruginosa. When M. aeruginosa was exposed to 0.6 mM cinnamaldehyde, considerable reactive oxygen species (ROS) were generated followed by lipid peroxidation and decrease in the content of both chlorophyll a and soluble protein. Although superoxide dismutase had made response to the stress caused by cinnamaldehyde, activity increasing after a time of lag could not prevent the lysis of M. aeruginosa cells. Interestingly, the addition of antioxidants glutathione and L-ascorbic acid (Vc) could prevent the lysis of M. aeruginosa cells. All the results suggested that cinnamaldehyde induced the death of M. aeruginosa cells via inducing ROS burst. Further understanding of the mechanism of cinnamaldehyde-induced M. aeruginosa cell death would contribute to the control of cyanobacteria pollution.
Show more [+] Less [-]Genetic Analysis of Black Spruce (Picea mariana) Populations from Dry and Wet Areas of a Metal-Contaminated Region in Ontario (Canada) Full text
2011
Dobrzeniecka, Sylwia | Nkongolo, Kabwe K. | Michael, Paul | Mehes-Smith, Melanie | Beckett, Peter
Genetic variation and genetic structure of black spruce (Picea mariana L.) populations growing in wet land (lowlands) and dry lands (uplands) with different levels of metal contaminations were analyzed using ISSR. Polymorphic loci (P%) ranged from 65% to 90% with a mean of 75%. Nei’s gene diversity (h) varied from 0.264 to 0.359 with a mean of 0.310, and Shannon’s index (I) ranged from 0.381 to 0.524 with a mean of 0.449. The level of genetic variation was higher in populations from wet lands than those from dry lands. Variation within populations accounts for most of total genetic variation. The genetic distance among the black spruce (P. mariana) populations ranged from 0.171 to 0.351. The present study indicates that genetic variation and long-term exposure to metals (more than 30Â years) are not associated. Cytological analysis of black spruce seeds from metal-contaminated and -uncontaminated areas showed normal mitotic behavior during prophase, metaphase, anaphase, and telophase.
Show more [+] Less [-]Equilibrium and Kinetic Characteristic of Adsorption of Cu2+, Pb 2+ on a Novel Anionic Starch Microspheres Full text
2011
Yang, YaTi | Wei, XiuZhi | Wan, JuanMin | Meng, ZhaoFu
Neutral starch microspheres (NSMs) were synthesized with epichlorohydrin as the cross-linking agent from soluble starch by inverse microemulsion method. Anionic starch microspheres (ASMs) were prepared from NSMs by the secondary polymerization with chloroacetic acid as the anionic etherifying agent. Scanning electron microscopy (SEM) revealed that microspheres had good sphericity and fine dispersibility, and the average particle size was about 75 μm. The adsorption procedure of Cu2+, Pb2+ on ASMs was carried out by batch experiments, Langmuir and Freundlich adsorption models were applied to describe the experimental isotherms, the adsorption equilibrium data were found to fit the Langmuir and Freundlich isotherm model, the Freundlich isotherm was more adequate than the Langmuir isotherm in simulating the adsorption isotherm of Cu2+,the adsorption of Cu2+, Pb2+ on ASMs was a spontaneous, the isosteric heat of adsorption at different adsorption levels was always negative and indicative of an exothermic process. The pseudo first- and second-order kinetic models were used to describe the kinetic data, and the rate constants were evaluated. The experimental data fitted well to the second-order kinetic model, which indicated that the chemical sorption was the rate-limiting step, instead of mass transfer.
Show more [+] Less [-]Using Seven Types of GM (1, 1) Model to Forecast Hourly Particulate Matter Concentration in Banciao City of Taiwan Full text
2011
Pai, Tzu-Yi | Ho, Ching-Lin | Chen, Shyh-Wei | Lo, Huang-Mu | Sung, Pao-Jui | Lin, Shuwen | Lai, Wei-Jia | Tseng, Shih-Chi | Ciou, Shu-Ping | Kuo, Jui-Ling | Kao, Jing-Tang
In this study, seven types of first-order and one-variable grey differential equation model (abbreviated as GM (1, 1) model) were used to predict hourly particulate matter (PM) including PM10 and PM2.5 concentrations in Banciao City of Taiwan. Their prediction performance was also compared. The results indicated that the minimum mean absolute percentage error (MAPE), mean squared error (MSE), root mean squared error (RMSE), and maximum correlation coefficient (R) was 14.10%, 25.62, 5.06, and 0.96, respectively, when predicting PM10. When predicting PM2.5, the minimum MAPE, MSE, RMSE, and maximum R value of 15.24%, 11.57, 3.40, and 0.93, respectively, could be achieved. All statistical values revealed that the predicting performance of GM (1, 1, x (0)), GM (1, 1, a), and GM (1, 1, b) outperformed other GM (1, 1) models. According to the results, it revealed that GM (1, 1) GM (1, 1) was an efficiently early warning tool for providing PM information to the inhabitants.
Show more [+] Less [-]The Fate of Polymeric Quaternary Ammonium Salts from Cosmetics in Wastewater Treatment Plants Full text
2011
Cumming, Janet | Hawker, Darryl | Chapman, Heather | Nugent, Kerry
Polymeric quaternary ammonium salts or polyquaterniums used in cosmetics have been categorised as chemicals of concern in wastewater treatment plant (WWTP) effluent largely on the basis of emerging evidence of toxicity to aquatic organisms. However, little is known of their environmental fate and behaviour due to analytical difficulties with sample matrices. Their properties of negligible volatilisation and biotransformation enable the common fugacity-based model for WWTPs to be simplified to an equifugacity one where a compound has the same fugacity regardless of phase or position in the plant’s process train. To gain an appreciation of their fate, this approach is used to calculate removal efficiencies in WWTPs. These can be determined without calculating phase-specific fugacity capacity constants. To predict effluent concentrations however, an aquivalence approach is necessary because of the lack of volatility of these compounds. Using previously measured biosolids/water distribution coefficients for common polyquaterniums found in cosmetics and flow rate data from a local municipal WWTP in South East Queensland, Australia, the removal efficiencies of the polyquaterniums of interest are predicted to be only 25% or less, meaning relatively little attenuation in the WWTP. A Monte Carlo simulation shows a roughly normal distribution in the model output of polyquaternium removal efficiency, with a mean and mode of approximately 26%. A sensitivity analysis confirms that the model output is most sensitive to the magnitude of the biosolids/water distribution coefficient compound and shows WWTP data such as biosolids removal efficiency have only a relatively small effect.
Show more [+] Less [-]Growth and Lead Accumulation Capacity of Lemna minor and Spirodela polyrhiza (Lemnaceae): Interactions with Nutrient Enrichment Full text
2011
Leblebici, Zeliha | Aksoy, A (Ahmet)
A study to understand the biological effects of samples prepared with lead and the effects of lead were conducted on Lemna minor L. and Spirodela polyrhiza (L.) Schleid. This study was intended to test the hypothesis that nutrient enrichment (P, NO ₃ ⁻ -N and SO ₄ ²⁻ ) enhances the metal tolerance of floating macrophytes. The plants were exposed to Pb concentrations 0, 1, 5, 10, 25, and 50 mg l⁻¹ for a period of 1, 3, 5, and 7 days. L. minor accumulated 561 mg g⁻¹ dry weight (dw) Pb, and S. polyrhiza accumulated 330 mg g⁻¹ dw Pb after 7 days, whereas in the groups enriched with nutrients, L. minor accumulated 128.7 mg g⁻¹ Pb and S. polyrhiza accumulated 68.7 mg g⁻¹ dw Pb after 7 days. Relative growth rates and photosynthetic pigments (chlorophyll a, b, and carotenoid) were measured in L. minor and S. polyrhiza exposed to different Pb concentrations under laboratory conditions. Relative growth rates were negatively correlated with metal exposure, but nutrient addition was found to suppress this effect. Photosynthetic pigment levels were found negatively correlated with metal exposure, and nutrient addition attenuated chlorophyll decrease in response to metal exposure. Metal and nutrient concentration in water decreased throughout the experiments. The study concluded that nutrient enrichment increases the tolerance of L. minor and S. polyrhiza to metals, that L. minor and S. polyrhiza are suitable candidates for the phytoremediation of low-level lead pollution, and that L. minor was more effective in extracting lead than was S. polyrhiza.
Show more [+] Less [-]Tracing Organic Footprints from Industrial Effluent Discharge in Recalcitrant Riverine Chromophoric Dissolved Organic Matter Full text
2011
Borisover, Mikhail | Laor, Yael | Saadi, Ibrahim | Lado, Marcos | Bukhanovsky, Nadezhda
Excitation–emission matrix fluorescence spectroscopy, combined with parallel factor analysis and measurements of UV absorption and dissolved organic carbon (DOC) concentrations, was used to trace the footprints of industrial effluents discharged into the lower Kishon River (Israel). The lower Kishon River typifies streams that are affected by seawater tidal intrusion and represents an extreme case of severe long-term pollution caused mainly by a variety of industrial effluents. The industrial effluents may contribute about 90%, in terms of biochemical oxygen demand, of the total organic carbon discharged into the lower Kishon River. Water samples were collected along the river, including the points of effluent discharge from industrial plants, between November 2005 and September 2006. Two types of fluorescent components characterized the fluorescence of the lower Kishon River water: component I corresponded to humic-like matter and component II spectrally resembled material known to be associated with biological productivity, but different from typical tryptophan-like fluorophore. These fluorescent components and other substances that absorbed light at 254 nm contributed to the DOC pool that resisted riverine microbial degradation under laboratory conditions, and that constitutes up to 70% of the overall riverine DOC. The variations in DOC concentration, absorbance at 254 nm, and concentration of humic-like matter (characterized by component I) correlated with the distance from the sea and the water electrical conductivity, and were linked to seawater tidal intrusion. The increased concentration of component II, as well as its enlarged fraction in the overall riverine DOC pool, was found to be associated with the location of major inputs of the industrial effluents. These findings support the use of this fluorescent component as an indicator of industrial pollution in such severely contaminated riverine systems.
Show more [+] Less [-]Mixing of Acid Rock Drainage with Alkaline Ash Leachates—Fate and Immobilisation of Trace Elements Full text
2011
Bäckström, Mattias | Sartz, Lotta
Acid rock drainage (ARD) often contains ferrous iron, sulphate and high concentrations of trace elements detrimental to the environment. Future costs will be enormous if the problem is not treated today. Simple and cost-effective methods for remediation of historical mine sites are therefore desired. In this study, three mine waters were mixed with alkaline ash leachates, and the fate of trace elements from both the mine waters (Cd, Cu, Pb, Zn, Ni and Co) and the ash leachates (Cr and Mo) was studied. Addition of ash water precipitates hydrous ferric oxides (HFO) and hydrous aluminium oxides (HAO) induced trace element sorption and coprecipitation. Composition of the formed HFO/HAO mix determines efficiency of the sorption and the relative order of sorption for different trace elements. Sorption occurred much earlier (often one pH unit or more) in a system with high iron concentrations compared to systems with lower iron concentrations. Removal of cadmium and zinc was low, below pH 8, if the amount of precipitates was low. Using ash for generation of alkaline water may be a problem with regard to chromium and molybdenum. This study shows that it is possible to avoid problems with molybdenum by keeping the final pH around 7, and chromium(VI) from the ash water will be reduced into chromium(III) and precipitated as the hydroxide in the presence of iron(II). Results imply that it is possible to also use fly ashes in alkaline leach beds in order to neutralize ARD followed by precipitation and sorption of trace elements.
Show more [+] Less [-]Presence of Pharmaceuticals and Hormones in Waters from Sewage Treatment Plants Full text
2011
Pedrouzo, Marta | Borrull, Francesc | Pocurull, Eva | Marcé, Rosa Maria
This paper describes the presence of 33 pharmaceuticals and hormones in waters from two sewage treatment plants (STPs) situated in Catalonia, in northeastern Spain. The target compounds were one psychoactive stimulant, one antiepileptic, four analgesics and non-steroidal anti-inflammatories, one lipid regulators, two anti-ulcer agents, nine antibiotics (sulfonamides and macrolides), two beta-blockers, two metabolites, and 11 hormones (free and conjugates). The determination was performed using liquid chromatography coupled to tandem mass spectrometry after enrichment by solid-phase extraction with Oasis HLB sorbent. Most of the pharmaceuticals were found in both influent and effluent samples from the two STPs. The most frequently detected were caffeine, acetaminophen, carbamazepine, diclofenac, ibuprofen, naproxen, sulfamethoxazole, sulfapyridine, sulfathiazole, ranitidine, omeprazole, estrone 3-sulfate, and estradiol 17-glucuronide. Specifically, the highest concentrations found in influents were 19,850Â ng/L (acetaminophen), 9,945Â ng/L (caffeine), 4,215Â ng/L (ibuprofen), 5,695Â ng/L (sulfamethoxazole), and 5,140Â ng/L (sulfathiazole). Most of the pharmaceuticals present in influent waters were found in effluents at lower concentrations. The highest concentrations in effluents were 970Â ng/L (caffeine), 670Â ng/L (sulfamethoxazole), 510Â ng/L (bezafibrate), and 1,032Â ng/L (diclofenac).
Show more [+] Less [-]