Refine search
Results 911-920 of 4,309
Impact of climate change on heat-related mortality in Jiangsu Province, China Full text
2017
Chen, Kai | Horton, Radley M. | Bader, Daniel A. | Lesk, Corey | Jiang, Leiwen | Jones, Bryan | Zhou, Lian | Chen, Xiaodong | Bi, Jun | Kinney, Patrick L.
A warming climate is anticipated to increase the future heat-related total mortality in urban areas. However, little evidence has been reported for cause-specific mortality or nonurban areas. Here we assessed the impact of climate change on heat-related total and cause-specific mortality in both urban and rural counties of Jiangsu Province, China, in the next five decades. To address the potential uncertainty in projecting future heat-related mortality, we applied localized urban- and nonurban-specific exposure response functions, six population projections including a no population change scenario and five Shared Socioeconomic Pathways (SSPs), and 42 temperature projections from 21 global-scale general circulation models and two Representative Concentration Pathways (RCPs). Results showed that projected warmer temperatures in 2016–2040 and 2041–2065 will lead to higher heat-related mortality for total non-accidental, cardiovascular, respiratory, stroke, ischemic heart disease (IHD), and chronic obstructive pulmonary disease (COPD) causes occurring annually during May to September in Jiangsu Province, China. Nonurban residents in Jiangsu will suffer from more excess heat-related cause-specific mortality in 2016–2065 than urban residents. Variations across climate models and RCPs dominated the uncertainty of heat-related mortality estimation whereas population size change only had limited influence. Our findings suggest that targeted climate change mitigation and adaptation measures should be taken in both urban and nonurban areas of Jiangsu Province. Specific public health interventions should be focused on the leading causes of death (stroke, IHD, and COPD), whose health burden will be amplified by a warming climate.
Show more [+] Less [-]Precipitation collector bias and its effects on temporal trends and spatial variability in National Atmospheric Deposition Program/National Trends Network data Full text
2017
Wetherbee, Gregory A.
Precipitation samples have been collected by the National Atmospheric Deposition Program's (NADP) National Trends Network (NTN) using the Aerochem Metrics Model 301 (ACM) collector since 1978. Approximately one-third of the NTN ACM collectors have been replaced with N-CON Systems, Inc. Model ADS 00-120 (NCON) collectors. Concurrent data were collected over 6 years at 12 NTN sites using colocated ACM and NCON collectors in various precipitation regimes. Linear regression models of the colocated data were used to adjust for relative bias between the collectors. Replacement of ACM collectors with NCON collectors resulted in shifts in 10-year seasonal precipitation-weighted mean concentration (PWMC) trend slopes for: cations (−0.001 to −0.007 mgL−1yr−1), anions (−0.009 to −0.028 mgL−1yr−1), and hydrogen ion (+0.689 meqL-1yr−1). Larger shifts in NO3− and SO4−2 seasonal PWMC trend slopes were observed in the Midwest and Northeast US, where concentrations are generally higher than in other regions. Geospatial analysis of interpolated concentration rasters indicated regions of accentuated variability introduced by incorporation of NCON collectors into the NTN.
Show more [+] Less [-]Microbial reduction of vanadium (V) in groundwater: Interactions with coexisting common electron acceptors and analysis of microbial community Full text
2017
Liu, Hui | Zhang, Baogang | Yuan, Heyang | Cheng, Yutong | Wang, Song | He, Zhen
Vanadium (V) pollution in groundwater has posed serious risks to the environment and public health. Anaerobic microbial reduction can achieve efficient and cost-effective remediation of V(V) pollution, but its interactions with coexisting common electron acceptors such as NO3−, Fe3+, SO42− and CO2 in groundwater remain unknown. In this study, the interactions between V(V) reduction and reduction of common electron acceptors were examined with revealing relevant microbial community and identifying dominant species. The results showed that the presence of NO3− slowed down the removal of V(V) in the early stage of the reaction but eventually led to a similar reduction efficiency (90.0% ± 0.4% in 72-h operation) to that in the reactor without NO3−. The addition of Fe3+, SO42−, or CO2 decreased the efficiency of V(V) reduction. Furthermore, the microbial reduction of these coexisting electron acceptors was also adversely affected by the presence of V(V). The addition of V(V) as well as the extra dose of Fe3+, SO42− and CO2 decreased microbial diversity and evenness, whereas the reactor supplied with NO3− showed the increased diversity. High-throughput 16S rRNA gene pyrosequencing analysis indicated the accumulation of Geobacter, Longilinea, Syntrophobacter, Spirochaeta and Anaerolinea, which might be responsible for the reduction of multiple electron acceptors. The findings of this study have demonstrated the feasibility of anaerobic bioremediation of V(V) and the possible influence of coexisting electron acceptors commonly found in groundwater.
Show more [+] Less [-]Polychlorinated biphenyls and polybrominated diphenylethers in soils from planted forests and adjacent natural forests on a tropical island Full text
2017
Liu, Xin | Wang, Shuai | Jiang, Yishan | Sun, Yingtao | Li, Jun | Zhang, Gan
Transformation from natural forests to planted forests in tropical regions is an expanding global phenomenon causing major modifications of land cover and soil properties, e.g. soil organic carbon (SOC). This study investigated accumulations of POPs in soils under eucalyptus and rubber forests as compared with adjacent natural forests on Hainan Island, China. Results showed that due to the greater forest filter effect and the higher SOC, the natural forest have accumulated larger amounts of POPs in the top 20 cm soil. Based on correlation and air-soil equilibrium analysis, we highlighted the importance of SOC in the distribution of POPs. It is assumed that the elevated mobility of POPs in the planted forests was caused by greater loss of SOC and extensive leaching in the soil profile. This suggests that a better understanding of global POPs fate should take into consideration the role of planted forests.
Show more [+] Less [-]Characteristics of dissolved organic matter (DOM) and relationship with dissolved mercury in Xiaoqing River-Laizhou Bay estuary, Bohai Sea, China Full text
2017
Jiang, Tao | Skyllberg, Ulf | Bjørn, Erik | Green, Nelson W. | Tang, Jianhui | Wang, Dingyong | Gao, Jie | Li, Chuxian
Because of heterogeneous properties, dissolved organic matter (DOM) is known to control the environmental fate of a variety of organic pollutants and trace metals in aquatic systems. Here we report absorptive and fluorescence properties of DOM, in concurrence with concentrations of dissolved mercury (Hg), along the Xiaoqing River-Laizhou Bay estuary system located in the Bohai Sea of China. A mixing model consisting of the two end-members terrestrial and aquatic DOM demonstrated that terrestrial signatures decreased significantly from the river into the estuary. Quasi-conservative mixing behavior of DOM sources suggests that the variations in the average DOM composition were governed by physical processes (e.g., dilution) rather than by new production and/or degradation processes. In contrast to some previous studies of river-estuary systems, the Xiaoqing River-Laizhou Bay estuary system displayed a non-significant correlation between DOM and Hg quantities. Based on this and the variation of Hg concentration along the salinity gradient, we concluded that Hg showed a non-conservative mixing behavior of suggested end-member sources. Thus, rather than mixing, Hg concentration variations seemed to be controlled by biogeochemical processes.
Show more [+] Less [-]Emission of volatile organic compounds from domestic coal stove with the actual alternation of flaming and smoldering combustion processes Full text
2017
Liu, Chengtang | Zhang, Chenglong | Mu, Yujing | Liu, Junfeng | Zhang, Yuanyuan
Volatile organic compounds (VOCs) emissions from the chimney of a prevailing domestic stove fuelled with raw bituminous coal were measured under flaming and smoldering combustion processes in a farmer's house. The results indicated that the concentrations of VOCs quickly increased after the coal loading and achieved their peak values in a few minutes. The peak concentrations of the VOCs under the smoldering combustion process were significantly higher than those under the flaming combustion process. Alkanes accounted for the largest proportion (43.05%) under the smoldering combustion, followed by aromatics (28.86%), alkenes (21.91%), carbonyls (5.81%) and acetylene (0.37%). The emission factors of the total VOCs under the smoldering combustion processes (5402.9 ± 2031.8 mg kg⁻¹) were nearly one order of magnitude greater than those under the flaming combustion processes (559.2 ± 385.9 mg kg⁻¹). Based on the VOCs emission factors obtained in this study and the regional domestic coal consumption, the total VOCs emissions from domestic coal stoves was roughly estimated to be 1.25 × 10⁸ kg a⁻¹ in the Beijing-Tianjin-Hebei region.
Show more [+] Less [-]Declining atmospheric deposition of heavy metals over the last three decades is reflected in soil and foliage of 97 beech (Fagus sylvatica) stands in the Vienna Woods Full text
2017
Türtscher, Selina | Berger, Petra | Lindebner, Leopold | Berger, Torsten W.
Rigorous studies on long-term changes of heavy metal distribution in forest soils since the implementation of emission controls are rare. Hence, we resampled 97 old-growth beech stands in the Vienna Woods. This study exploits an extensive data set of soil (infiltration zone of stemflow and between trees area) and foliar chemistry from three decades ago. It was hypothesized that declining deposition of heavy metals is reflected in soil and foliar total contents of Pb, Cu, Zn, Ni, Mn and Fe. Mean soil contents of Pb in the stemflow area declined at the highest rate from 223 to 50 mg kg−1 within the last three decades. Soil contents of Pb and Ni decreased significantly both in the stemflow area and the between trees area down to 80–90 cm soil depth from 1984 to 2012. Top soil (0–5 cm) accumulation and simultaneous loss in the lower soil over time for the plant micro nutrients Cu and Zn are suggested to be caused by plant uptake from deep horizons. Reduced soil leaching, due to a mean soil pH (H2O) increase from 4.3 to 4.9, and increased plant cycling are put forward to explain the significant increase of total Mn contents in the infiltration zone of beech stemflow. Top soil Pb contents in the stemflow area presently exceed the critical value at which toxicity symptoms may occur at numerous sites. Mean foliar contents of all six studied heavy metals decreased within the last three decades, but plant supply with the micro nutrients Cu, Zn, Mn and Fe is still in the optimum range for beech trees. It is concluded that heavy metal pollution is not critical for the studied beech stands any longer. Microsites, affected by beech stemflow, are very useful for studying the legacy of high atmospheric heavy metal deposition.
Show more [+] Less [-]Heatwave and infants' hospital admissions under different heatwave definitions Full text
2017
Xu, Zhiwei | Crooks, James Lewis | Black, Deborah | Hu, Wenbiao | Tong, Shilu
Data on the health impacts of heatwaves in infants are limited, and this study aimed to examine how heatwaves affect hospital admissions in infants.A quasi-Poisson generalized additive model was used to assess the effects of heatwaves on hospital admissions in infants from 1st January 2005 to 31st December 2015 in Brisbane, Australia, using a series of heatwave definitions after controlling for possible confounders. A case-only analysis was conducted to examine the possible modification effects of personal and community characteristics on the heatwaves effects on infants' hospital admissions.There was no significant increase in infants' hospital admissions when heatwave intensity was defined as mean temperature ≥90th percentile or ≥95th percentile of the mean temperature across the study period. When heatwave intensity increased to ≥97th percentile, infants' hospital admissions increased significantly (RR: 1.05, 95% CI: 1.01, 1.10), and this increase raised with the increase of heatwave duration. No modification effect of gender, indigenous status, or Socio-Economic Indexes for Areas (SEIFA) level on heatwave effect was observed.Infants in Brisbane were sensitive to intense heatwaves, and future heat early warning system based on a local evidence-based heatwave definition is needed to protect infants from heatwave impacts. Community-based heatwave adaptation programs aiming at raising the awareness of the adverse health impacts of intense heatwaves among infants' caregivers may relieve the postnatal health care demand in infants.
Show more [+] Less [-]Perfluoroalkyl acids in surface sediments of the East China Sea Full text
2017
Wang, Qian-Wen | Yang, Gui-Peng | Zhang, Ze-Ming | Jian, Shan
The occurrence of 17 target PFAA analytes was determined in surface sediments (n = 37) of the East China Sea and potential influencing factors were examined. ΣPFAAs ranged from 0.41 ng/g dw to 3.06 ng/g dw, with perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) as the most abundant perfluorocarboxylic acid and perfluoroalkyl sulfonate, respectively. PFAAs in the sediments were strongly influenced by terrigenous input. Analysis of the relationship between dynamic influence factors and PFAA concentrations showed that the characteristics of PFAA distribution were rather complex. ΣPFAA concentrations and TOC were positively correlated (p < 0.0001). Circumfluence also influenced the whole PFAA distribution and seasonal variation. In addition, correlation analysis suggested that log Koc values increased with increasing perfluoroalkyl chain length. Given the rapid economic development of eastern coastal cities of China, the environmental hazards of land source pollution cannot be ignored.
Show more [+] Less [-]Diallyl trisulfide (DATS) suppresses benzene-induced cytopenia by modulating haematopoietic cell apoptosis Full text
2017
Han, Wenting | Wang, Shuo | Jiang, Lulu | Wang, Hui | Li, Ming | Wang, Xujing | Xie, Keqin
Benzene is a well-known occupational and environmental toxicant associated with cytopenia, which is characterized by a disorder in the peripheral blood cell counts. However, no effective preventive strategy has been developed yet to tackle the exposure to benzene in daily life. The aim of this study was to evaluate the protective effects of diallyl trisulfide (DATS) on benzene-induced haematopoietic damage and to reveal its potential mechanisms of action. In our study, male Sprague-Dawley rats were divided into six groups. Rats were administered with benzene (1.3 g/kg BW by gavage) to establish the benzene poisoning model, while the DATS treatment groups were treated with benzene plus DATS (15 mg/kg, 30 mg/kg, 45 mg/kg, respectively, by gavage) for 28 days. Our results demonstrated that the counts of peripheral blood WBC and RBC decreased to 31.0% and 79.2%, respectively, in the benzene poisoning model group compared to the control. However, blood cell counts were restored by DATS treatment (30 mg/kg, 45 mg/kg). The apoptosis rates of peripheral blood mononuclear cells (PBMCs) and bone marrow cells (BMCs) were increased to 274% and 284%, respectively, following benzene exposure. Furthermore, expression levels of Bcl-2, PI3K and p-Akt were downregulated and those of Bax were upregulated in both cell types. Moreover, the oxidative parameters (oxygen species, malonaldehyde) were significantly increased, while the non-enzymatic GSH/GSSG ratios and the activities of enzymatic antioxidants (superoxide dismutase, glutathione peroxidase and catalase) were decreased. Interestingly, DATS treatment can restore the WBC number by 267.1% and 304.8% while RBC number by 108.6% and 117.7% in 30,45 mg/k DATS treated groups. In summary, we demonstrated that benzene-induced cytopenia was related to the apoptosis of PBMCs and BMCs, and DATS treatment could prevent benzene-induced cytopenia by suppressing oxidative stress-mediated cell apoptosis via the PI3K/Akt pathway.
Show more [+] Less [-]