Refine search
Results 911-920 of 5,143
Soil carbon inventory to quantify the impact of land use change to mitigate greenhouse gas emissions and ecosystem services
2018
Potma Gonçalves, Daniel Ruiz | Carlos de Moraes Sá, João | Mishra, Umakant | Ferreira Furlan, Flávia Juliana | Ferreira, Lucimara Aparecida | Inagaki, Thiago Massao | Romaniw, Jucimare | de Oliveira Ferreira, Ademir | Briedis, Clever
Currently the land use and land use change (LULUC) emits 1.3 ± 0.5 Pg carbon (C) year⁻¹, equivalent to 8% of the global annual emissions. The objectives of this study were to quantify (1) the impact of LULUC on greenhouse gas (GHG) emissions in a subtropical region and (2) the role of conservation agriculture to mitigate GHG emissions promoting ecosystem services. We developed a detailed IPCC Tier 2 GHG inventory for the Campos Gerais region of southern Brazil that has large cropland area under long-term conservation agriculture with high crop yields. The inventory accounted for historical and current emissions from fossil fuel combustion, LULUC and other minor sources. We used Century model to simulate the adoption of conservation best management practices, to all croplands in the region from 2017 to 2117. Our results showed historical (1930–2017) GHG emissions of 412 Tg C, in which LULUC contributes 91% (376 ± 130 Tg C), the uncertainties ranged between 13 and 36%. Between 1930 and 1985 LULUC was a major source of GHG emission, however from 1985 to 2015 fossil fuel combustion became the primary source of GHG emission. Forestry sequestered 52 ± 24 Tg C in 0.6 Mha in a period of 47 years (1.8 Tg C Mha⁻¹ year⁻¹) and no-till sequestered 30.4 ± 24 Tg C in 2 Mha in a period of 32 years (0.5 Tg C Mha⁻¹ year⁻¹) being the principal GHG mitigating activities in the study area. The model predictions showed that best management practices have the potential to mitigate 13 years of regional emissions (330 Tg C in 100 years) or 105 years of agriculture, forestry and livestock emissions (40 Tg C in 100 years) making the agriculture sector a net carbon (C) sink and promoting ecosystem services.
Show more [+] Less [-]Brain morphometric profiles and their seasonal modulation in fish (Liza aurata) inhabiting a mercury contaminated estuary
2018
Puga, Sónia | Cardoso, Vera | Pinto-Ribeiro, Filipa | Pacheco, Mario | Almeida, Armando | Pereira, Patrícia
Mercury (Hg) is a potent neurotoxicant known to induce important adverse effects on fish, but a deeper understanding is lacking regarding how environmental exposure affects the brain morphology and neural plasticity of specific brain regions in wild specimens. In this work, it was evaluated the relative volume and cell density of the lateral pallium, hypothalamus, optic tectum and molecular layer of the cerebellum on wild Liza aurata captured in Hg-contaminated (LAR) and non-contaminated (SJ) sites of a coastal system (Ria de Aveiro, Portugal). Given the season-related variations in the environment that fish are naturally exposed, this assessment was performed in the winter and summer. Hg triggered a deficit in cell density of hypothalamus during the winter that could lead to hormonal dysfunctions, while in the summer Hg promoted larger volumes of the optic tectum and cerebellum, indicating the warm period as the most critical for the manifestation of putative changes in visual acuity and motor-dependent tasks. Moreover, in fish from the SJ site, the lateral pallium relative volume and the cell density of the hypothalamus and optic tectum were higher in the winter than in summer. Thus, season-related stimuli strongly influence the size and/or cell density of specific brain regions in the non-contaminated area, pointing out the ability of fish to adapt to environmental and physiological demands. Conversely, fish from the Hg-contaminated site showed a distinct seasonal profile of brain morphology, presenting a larger optic tectum in the summer, as well as a larger molecular layer of the cerebellum with higher cell density. Moreover, Hg exposure impaired the winter-summer variation of the lateral pallium relative size (as observed at SJ). Altogether, seasonal variations in fish neural morphology and physiology should be considered when performing ecotoxicological studies in order to better discriminate the Hg neurotoxicity.
Show more [+] Less [-]A comprehensive probabilistic approach for integrating natural variability and parametric uncertainty in the prediction of trace metals speciation in surface waters
2018
Ciffroy, P. | Benedetti, M.
The main objectives of this study were to evaluate global uncertainty in the prediction of Distribution coefficients (Kds) for several Trace Metals (TM) (Cd, Cu, Pb, Zn) through the probabilistic use of a geochemical speciation model, and to conduct sensitivity analysis in speciation modeling in order to identify the main sources of uncertainty in Kd prediction. As a case study, data from the Loire river (France) were considered. The geochemical speciation model takes into account complexation of TM with inorganic ligands, sorption of TM with hydrous ferric oxides, complexation of TM with dissolved and particulate organic matter (i.e. dissolved and particulate humic acids and fulvic acids) and sorption and/or co-precipitation of TM to carbonates. Probability Density Functions (PDFs) were derived for physico-chemical conditions of the Loire river from a comprehensive collection of monitoring data. PDFs for model parameters were derived from literature review. Once all the parameters were assigned PDFs that describe natural variability and/or knowledge uncertainty, a stepwise structured sensitivity analysis (SA) was performed, by starting from computationally ‘inexpensive’ Morris method to most costly variance-based EFAST method. The most sensitive parameters on Kd predictions were thus ranked and their contribution to Kd variance was quantified. Uncertainty analysis was finally performed, allowing quantifying Kd ranges that can be expected when considering all the sensitive parameters together.
Show more [+] Less [-]Phytate promoted arsenic uptake and growth in arsenic-hyperaccumulator Pteris vittata by upregulating phosphorus transporters
2018
Liu, Xue | Feng, Hua–Yuan | Fu, Jing–Wei | Sun, Dan | Cao, Yue | Chen, Yanshan | Xiang, Ping | Liu, Yungen | Ma, Lena Q.
While phosphate (P) inhibits arsenic (As) uptake by plants, phytate increases As uptake by As-hyperaccumulator Pteris vittata. Here we tried to understand the underling mechanisms by investigating the roles of phytate in soil As desorption, P transport in P. vittata, short-term As uptake, and plant growth and As accumulation from soils. Sterile soil was used to exclude microbial degradation on phytate. Results showed that inorganic P released 3.3-fold more As than that of phytate from soil. However, P. vittata accumulated 2–2.5 fold more As from soils with phytate than that in control and P treatment. In addition, different from P suppression on As uptake, solution uptake experiment showed that As uptake in phytate treatment was comparable to that of control under 0.1–7.5 μM As after 1–24 h. Moreover, responding to phytate, P. vittata P transporter PvPht1;3 increased by 3-fold while PvPht1;1 decreased by 65%. The data suggested that phytate upregulated PvPht1;3, thereby contributing to As uptake in P. vittata. Our results showed that, though with lower As release from soil compared to P, phytate induced more As uptake and better growth in P. vittata by upregulating P transporters.
Show more [+] Less [-]Chronic exposure to copper and zinc induces DNA damage in the polychaete Alitta virens and the implications for future toxicity of coastal sites
2018
Watson, Gordon J. | Pini, Jennifer M. | Richir, Jonathan
Copper and zinc are metals that have been traditionally thought of as past contamination legacies. However, their industrial use is still extensive and current applications (e.g. nanoparticles and antifouling paints) have become additional marine environment delivery routes. Determining a pollutant's genotoxicity is an ecotoxicological priority, but in marine benthic systems putative substances responsible for sediment genotoxicity have rarely been identified. Studies that use sediment as the delivery matrix combined with exposures over life-history relevant timescales are also missing for metals. Here we assess copper and zinc's genotoxicity by exposing the ecologically important polychaete Alitta virens to sediment spiked with environmentally relevant concentrations for 9 months. Target bioavailable sediment and subsequent porewater concentrations reflect the global contamination range for coasts, whilst tissue concentrations, although elevated, were comparable with other polychaetes. Survival generally reduced as concentrations increased, but monthly analyses show that growth was not significantly different between treatments. The differential treatment mortality may have enabled the surviving worms in the high concentration treatments to capture more food thus removing any concentration treatment effects for biomass. Using the alkaline comet assay we confirm that both metals via the sediment are genotoxic at concentrations routinely found in coastal regions and this is supported by elevated DNA damage in worms from field sites. However, combined with the growth data it also highlights the tolerance of A. virens to DNA damage. Finally, using long term (decadal) monitoring data we show stable or increasing sediment concentrations of these metals for many areas. This will potentially mean coastal sediment is a significant mutagenic hazard to the benthic community for decades to come. An urgent reappraisal of the current input sources for these ‘old pollutants’ is, therefore, required.
Show more [+] Less [-]Impact evaluation of environmental factors on respiratory function of asthma patients living in urban territory
2018
Veremchuk, Lyudmila V. | Tsarouhas, Konstantinos | Vitkina, Tatyana I. | Mineeva, Elena E. | Gvozdenko, Tatyana A. | Antonyuk, Marina V. | Rakitskii, Valeri N. | Sidletskaya, Karolina A. | Tsatsakis, Aristidis M. | Golokhvast, Kirill S.
Environmental pollution, local climatic conditions and their association with the prevalence and exacerbation of asthma are topics of intense current medical investigation.Air pollution in the area of Vladivostock was estimated both by the index of emission volumes of "air gaseous components" (nitrogen oxide and nitrogen dioxide, formaldehyde, hydrogen sulfide, carbon monoxide) in urban atmosphere and by mass spectrometric analysis of precipitates in snow samples. A total of 172 local asthma patients (101 controlled-asthma patients–CAP and 71 non-controlled asthma patients – nCAP) were evaluated with the use of spirometry and body plethysmography. Airway obstruction reversibility was evaluated with the use of an inhaled bronchodilator. Using discriminant analysis the association of environmental parameters with clinical indices of asthma patients is explored and thresholds of impact are established.CAP presented high sensitivity to large-size suspended air particles and to several of the studied climatic parameters. Discriminant analysis showed high values of Wilks’ lambda index (α = 0.69–0.81), which implies limited influence of environmental factors on the respiratory parameters of CAP. nCAP were more sensitive and susceptible to the majority of the environmental factors studied, including air suspended toxic metals particles (Cr, Zn and Ni). Air suspended particles showed higher tendency for pathogenicity in nCAP population than in the CAP, with a wider range of particle sizes being involved. Dust fractions ranging from 0 to 1 μm and from 50 to 100 μm were additionally implicated compared to CAP group. Considerably lowest thresholds levels of impact are calculated for nCAP.
Show more [+] Less [-]Crosstalk of oxidative damage, apoptosis, and autophagy under endoplasmic reticulum (ER) stress involved in thifluzamide-induced liver damage in zebrafish (Danio rerio)
2018
Although the hepatotoxicity of thifluzamide in zebrafish has been characterized, its toxic mechanisms have not been fully explored. The present study demonstrated that thifluzamide damaged the zebrafish liver and endoplasmic reticulum (ER). In addition, thifluzamide significantly changed the expression of genes encoding antioxidant proteins and increased the malondialdehyde (MDA) content, leading to oxidative damage in zebrafish liver. Additionally, the autophagic ultrastructure was observed by transmission electron microscopy (TEM), and LC3-I/LC3-II conversion was obviously upregulated under western blotting (WB) measurements, verifying that autophagy was induced by thifluzamide. Moreover, the activities of Caspase-3 and Caspase-9 were obviously decreased, indicating that apoptosis was inhibited in adult zebrafish exposed to a higher concentration of thifluzamide. In summary, oxidative damage and autophagy but not apoptosis under ER injury might lead to the hepatotoxicity of thifluzamide in zebrafish. Our findings provide a new mechanistic insight into the toxicity of thifluzamide in zebrafish.
Show more [+] Less [-]Wet deposition and sources of inorganic nitrogen in the Three Gorges Reservoir Region, China
2018
Wang, Huanbo | Shi, Guangming | Tian, Mi | Chen, Yang | Qiao, Baoqing | Zhang, Liuyi | Yang, Fumo | Zhang, Leiming | Luo, Qiong
Precipitation samples were collected at five rural and one urban sites in the Three Gorges Reservoir Region (TGR), China from March 2014 to February 2016. The inorganic reactive nitrogen (Nr) contents were analysed to investigate their wet deposition flux, budget, and sources in the area. Annual Nr wet deposition varied from 7.1 to 23.4 kg N ha⁻¹ yr⁻¹ over the six sites during the two-year study campaign. The six-site average Nr wet deposition flux was 17.1 and 11.7 kg N ha⁻¹ yr⁻¹ in 2014 and 2015, respectively, with 71% from NH₄⁺ and 29% from NO₃⁻. Dry deposition flux was estimated using the inferential method, which combined the measured ambient concentrations and modelled dry deposition velocities. The total (dry + wet) Nr deposition fluxes were estimated to be 21.4 kg N ha⁻¹ yr⁻¹ in 2014 and 16.0 kg N ha⁻¹ yr⁻¹ in 2015 at rural sites, and 31.4 and 25.3 kg N ha⁻¹ yr⁻¹ at the urban site. Annual average volume weighted mean (VWM) concentrations in precipitation at all the six sites differed little for NO₃⁻ but up to a factor of 2.0 for NH₄⁺ with the highest value at the urban site. Industrial emissions, agricultural emissions, soil dust, and biomass burning were identified as potential sources of the major inorganic ions in precipitation using factor analysis and correlation analysis. Conditional probability function (CPF) analysis indicated that the urban site was predominantly affected by industrial emissions from a power plant, cement manufactory, and salt chemical facility located ∼13 km southeast of the sampling site.
Show more [+] Less [-]Environmentally relevant concentrations of polyethylene microplastics negatively impact the survival, growth and emergence of sediment-dwelling invertebrates
2018
Ziajahromi, Shima | Kumar, Anupama | Neale, Peta A. | Leusch, Frederic D.L.
Microplastics are a widespread environmental pollutant in aquatic ecosystems and have the potential to eventually sink to the sediment, where they may pose a risk to sediment-dwelling organisms. While the impacts of exposure to microplastics have been widely reported for marine biota, the effects of microplastics on freshwater organisms at environmentally realistic concentrations are largely unknown, especially for benthic organisms. Here we examined the effects of a realistic concentration of polyethylene microplastics in sediment on the growth and emergence of a freshwater organism Chironomus tepperi. We also assessed the influence of microplastic size by exposing C. tepperi larvae to four different size ranges of polyethylene microplastics (1–4, 10–27, 43–54 and 100–126 μm). Exposure to an environmentally relevant concentration of microplastics, 500 particles/kgsediment, negatively affected the survival, growth (i.e. body length and head capsule) and emergence of C. tepperi. The observed effects were strongly dependent on microplastic size with exposure to particles in the size range of 10–27 μm inducing more pronounced effects. While growth and survival of C. tepperi were not affected by the larger microplastics (100–126 μm), a significant reduction in the number of emerged adults was observed after exposure to the largest microplastics, with the delayed emergence attributed to exposure to a stressor. While scanning electron microscopy showed a significant reduction in the size of the head capsule and antenna of C. tepperi exposed to microplastics in the 10–27 μm size range, no deformities to the external structure of the antenna and mouth parts in organisms exposed to the same size range of microplastics were observed. These results indicate that environmentally relevant concentrations of microplastics in sediment induce harmful effects on the development and emergence of C. tepperi, with effects greatly dependent on particle size.
Show more [+] Less [-]Efficacy of dust aerosol forecasts for East Asia using the adjoint of GEOS-Chem with ground-based observations
2018
Jeong, Jaein I. | Park, Rokjin J.
Asian dust storms occur often and have a great impact on East Asia and the western Pacific in spring. Early warnings based on reliable forecasts of dust storms thus are crucial for protecting human health and industry. Here we explore the efficacy of 4-D variational method-based data assimilation in a chemical transport model for dust storm forecasts in East Asia. We use a 3-D global chemical transport model (GEOS-Chem) and its adjoint model with surface PM₁₀ mass concentration observations. We evaluate the model for several severe dust storm events, which occurred in May 2007 and March 2011 in East Asia. First of all, simulated the PM₁₀ mass concentrations with the forward model showed large discrepancies compared with PM₁₀ mass concentrations observed in China, Korea, and Japan, implying large uncertainties of simulated dust emission fluxes in the source regions. Based on our adjoint model constrained by observations for the whole period of each event, the reproduction of the spatial and temporal distributions of observations over East Asia was substantially improved (regression slopes from 0.15 to 2.81 to 0.85–1.02 and normalized mean biases from −74%–151% to −34%–1%). We then examine the efficacy of the data assimilation system for daily dust storm forecasts based on the adjoint model including previous day observations to update the initial condition of the forward model simulation for the next day. The forecast results successfully captured the spatial and temporal variations of ground-based observations in downwind regions, indicating that the data assimilation system with ground-based observations effectively forecasts dust storms, especially in downwind regions. However, the efficacy is limited in nearby the dust source regions, including Mongolia and North China, due to the lack of observations for constraining the model.
Show more [+] Less [-]