Refine search
Results 911-920 of 5,239
Determination of the vertical profile of aerosol chemical species in the microscale urban environment Full text
2018
Chen, Yu-Chieh | Zhang, Zhizhong | Chen, Wei-Nai | Tsai, Yu-Jen | Chang, Shih-Yu
This study developed a lightweight air composition measuring equipment (ACME) mounted in unmanned aerial vehicles (UAVs) to measure the vertical distribution characteristics of PM₂.₅ chemical species in the micro-scale urban environment for the first time. 212 samples collected from 0 to 350 m above ground level were analyzed for water-soluble ions. The concentrations of most ions on the above ground level were higher than that on the ground surface during the sampling period. The measurements of the total ion concentrations were approximately 54 to 26% of the PM₂.₅ mass concentrations on the ground surface. The concentrations of NH₄⁺ and NO₃⁻ decreased with increases in the height from the ground, which may be related to the influence of the vehicle emissions and human activities. NO₂⁻ and SO₄²⁻ both had a peak concentration on the higher vertical altitude at night in the sea-land wind system. In the southern wind system, the emissions of sea salts, dust, and stationary pollution, might be transported by the regional prevailing airflow from the southern coastal area, were the major pollutant sources above the boundary layer. The vertical distribution of ionic concentrations and wind field provided information concerning changes in pollutant transport and source regions that affect the local air quality. The ACME mounted in UAVs is the feasible and convenient method to fast understand the vertical distributions of aerosol chemical species. It provides important information about the accumulation and diffusion effects by the boundary layer variation to aerosol characteristics, which is difficulty observed from the conventional ground-based measurements. In future, this technology is the useful application for investigating the pollutant species emitted from the smokestack and the sudden pollution accident.
Show more [+] Less [-]Genotoxicity by long-term exposure to the auxinic herbicides 2,4-dichlorophenoxyacetic acid and dicamba on Cnesterodon decemmaculatus (Pisces: Poeciliidae) Full text
2018
Ruiz de Arcaute, Celeste | Larramendy, Marcelo L. | Soloneski, Sonia
Long-term genotoxic effects of two auxinic herbicide formulations, namely, the 58.4% 2,4-dichlorophenoxyacetic acid (2,4-D)-based DMA® and the 57.7% dicamba (DIC)-based Banvel® were evaluated on Cnesterodon decemmaculatus. Primary DNA lesions were analyzed by the single-cell gel electrophoresis methodology. Two sublethal concentrations were tested for each herbicide corresponding to 2.5% and 5% of the LC50₉₆ₕ values. Accordingly, fish were exposed to 25.2 and 50.4 mg/L or 41 and 82 mg/L for 2,4-D and DIC, respectively. Fish were continuously exposed for 28 days with replacement of test solutions every 3 days. Genotoxicity was evaluated in ten individuals from each experimental point at the beginning of the exposure period (0 day) and at 7, 14, 21 and 28 days thereafter. Results demonstrated for first time that 2,4-D-based formulation DMA® induced primary DNA strand breaks after 7–28 days exposure on C. decemmaculatus regardless its concentration. On the other hand, DIC-based formulation Banvel® exerted its genotoxic effect after exposure during 7–14 days and 7 days of 2.5 and 5% LC50₉₆ₕ, respectively. The present study represents the first evidence of primary DNA lesions induced by two widely employed auxinic herbicides on C. decemmaculatus, namely 2,4-D and DIC, following long-term exposure.
Show more [+] Less [-]Transformation/degradation of tetrabromobisphenol A and its derivatives: A review of the metabolism and metabolites Full text
2018
Liu, Aifeng | Zhao, Zongshan | Qu, Guangbo | Shen, Zhaoshuang | Shi, Jianbo | Jiang, Guibin
Although the abiotic and biotic transformation/degradation (T/D) processes of tetrabromobisphenol A (TBBPA) have been widely investigated in model experiments, few reviews have focused on these processes along with their metabolites or degradation products. In this paper, we summarize the current knowledge on the T/D of TBBPA and its derivatives, including abiotic and biotic T/D strategies/conditions, mechanisms, metabolites and environmental occurrences. Various treatments, such as pyrolysis, photolysis, chemical reactions and biotransformation, have been employed to study the metabolic mechanism of TBBPA and its derivatives and to remediate associated contaminated environments. To date, more than 100 degradation products and metabolites have been identified, dominated by less brominated compounds such as bisphenol A, 2,6-dibromo-4-isopropylphenol, 2,6-dibromo-4-hydroxyl-phenol, 2,6-dibromophenol, isopropylene-2,6-dibromophenol, 4-(2-hydroxyisopropyl)-2,6-dibromophenol, etc. It can be concluded that the T/D of TBBPA mainly takes place through debromination and β-scission. In some environmental media and human and animal tissues, brominated metabolites, glucoside and sulfate derivatives are also important T/D products. Here, the T/D products of TBBPA and its derivatives have been most comprehensively presented from the literature in recent 20 years. This review will enhance the understanding of the environmental behaviors of TBBPA-associated brominated flame retardants along with their ecological and health risks.
Show more [+] Less [-]Nitrate reduction pathways in the presence of excess nitrogen in a shallow eutrophic estuary Full text
2018
Domangue, Rebecca J. | Mortazavi, Behzad
The eutrophication of estuaries results from increasing anthropogenic nutrient inputs to coastal waters. Ecosystem recovery from eutrophication is partly dependent on the ability of a system to assimilate or remove nutrients, and denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are important pathways for nitrogen (N) removal or retention. We measured rates of denitrification and DNRA over an annual cycle at two stations in Weeks Bay, AL, a shallow microtidal estuary receiving freshwater from two rivers with agricultural watersheds and high N inputs. We hypothesized that rates of DNRA would exceed denitrification in the sulfidogenic sediments in this estuary. Consistent with our hypothesis, we found that DNRA (44.4 ± 5.5 μmol N m−2 hr−1) exceeded in situ denitrification (0.9 ± 2.3 μmol N m−2 hr−1) and that even in the presence of abundant water column nitrate DNRA was favored over denitrification by a factor of two. DNRA is estimated to provide N to the water column at a rate equivalent to 15% of the N input that is retained within the estuary and is a significant component of the N budget in this highly impacted estuary. DNRA by retaining N in the system contributes to the N demand by primary producers and can impact this estuary through enhanced rates of primary production. Weeks Bay, like many coastal estuaries, experiences periods of hypoxia, blooms of harmful algae and fish kills. Future management efforts should focus on reducing nutrient input to this estuary without which the significant retention of N in this system through DRNA will contribute to the undesirable ecosystem attributes associated with eutrophication.
Show more [+] Less [-]Neonatal triphenyl phosphate and its metabolite diphenyl phosphate exposure induce sex- and dose-dependent metabolic disruptions in adult mice Full text
2018
Wang, Dezhen | Zhu, Wentao | Chen, Li | Yan, Jin | Teng, Miaomiao | Zhou, Zhiqiang
The widespread application of organophosphorous flame retardants (OPFRs) has led to considerable human exposure, with major concerns regarding their health risks. Herein, we investigate the effects of triphenyl phosphate (TPP), one of the most widely used OPFRs, and one of its main metabolite diphenyl phosphate (DPP) on the endocrine systems and metabolic profiles after neonatal exposure from postnatal days 1–10 at two dosages (2 and 200 μg per day). Both TPP and DPP had no negative effect on uterine weight, glucose tolerance, and estradiol. 1H-NMR-based metabolomics revealed a sex-specific metabolic disturbance of TPP. Specifically, low dose of TPP altered the metabolic profiles of male mice while exerting no significant effects on female ones. Furthermore, a dose-dependent effect of TPP in male mice was observed, where a low toxicity dose up-regulated lipid-related metabolites, while a high toxicity dose down-regulated the pyruvate metabolism and TCA cycles. These results highlight the importance of carefully assessing the health impact of TPP on infants.
Show more [+] Less [-]The intensified constructed wetlands are promising for treatment of ammonia stripped effluent: Nitrogen transformations and removal pathways Full text
2018
Lyu, Tao | He, Keli | Dong, Renjie | Wu, Shubiao
This study investigated the treatment performance and nitrogen removal mechanism of highly alkaline ammonia-stripped digestate effluent in horizontal subsurface flow constructed wetlands (CWs). A promising nitrogen removal performance (up to 91%) was observed in CWs coupled with intensified configurations, i.e., aeration and effluent recirculation. The results clearly supported that the higher aeration ratio and presence of effluent recirculation are important to improve the alkalinity and pollutant removal in CWs. The influent pH (>10) was significantly decreased to 8.2–8.8 under the volumetric hydraulic loading rates of 0.105 and 0.21 d−1 in the CWs. Simultaneously, up to 91% of NH4+-N removal was achieved under the operation of a higher aeration ratio and effluent recirculation. Biological nitrogen transformations accounted for 94% of the consumption of alkalinity in the CWs. The significant enrichment of δ15N-NH4+ in the effluent (47–58‰) strongly supports the occurrence of microbial transformations for NH4+-N removal. However, relatively lower enrichment factors of δ15N-NH4+ (−1.8‰ to −11.6‰) compared to the values reported in previous studies reflected the inhibition effect of the high pH alkaline environment on nitrifiers in these CWs.
Show more [+] Less [-]Exposure levels and health risk assessment of ambient BTX at urban and rural environments of a terai region of northern India Full text
2018
Masih, Amit | Lall, Anurag S. | Taneja, Ajay | Singhvi, Raj
Benzene, toluene and xylene (BTX) belong to an important group of aromatic volatile organic compounds (VOCs) that are usually emitted from various sources. BTX play a vital role in the tropospheric chemistry as well as pose health hazard to human beings. Thus, an investigation of ambient benzene, toluene and xylene (BTX) was conducted at urban and rural sites of Gorakhpur for a span of one year in order to ascertain the contamination levels. The sampling of BTX was performed by using a low-flow SKC Model 220 sampling pump equipped with activated coconut shell charcoal tubes with a flow rate of 250 ml/min for 20–24 h. The analysis was in accordance with NIOSH method 1501. The efficiency of pump was checked weekly using regulated rotameters with an accuracy of ±1%. The samples were extracted with CS₂ with occasional agitation and analyzed by GC-FID. The total BTX concentration ranged from 3.4 μg m⁻³ to 45.4 μg m⁻³ with mean value 30.95 μg m⁻³ and median 24.8 μg m⁻³. The mean concentration of total BTX was maximum during winter (39.3 μg m⁻³), followed by summer (28.4 μg m⁻³) and monsoon season (25.1 μg m⁻³). The mean concentration of BTX at urban site (11.8 μg m⁻³) was higher than that at rural site (8.8 μg m⁻³). At both the sites, T/B and X/B ratios were highest in monsoon and lowest in winters. Toluene against benzene plot shows R² value of 0.96 and 0.49 at urban and rural sites respectively. Higher R² value at urban site clearly indicates similar sources of emission for benzene and toluene. At both the sites, the estimated integrated lifetime cancer risk (ILTCR) for benzene exceeded the threshold value of 1E-06 whereas the individual hazard quotients (HQ) for BTX did not exceed unity at any of the sites.
Show more [+] Less [-]Diverse mechanisms drive fluoride enrichment in groundwater in two neighboring sites in northern China Full text
2018
Li, Danni | Gao, Xubo | Wang, Yanxin | Luo, Wenting
Excessive amounts of fluoride in drinking groundwater are harmful to human health, but the mechanisms responsible for fluoride enrichment in groundwater are not fully understood. Samples from two neighboring areas with endemic fluorosis were collected to test the hypothesis that there are distinctly different mechanisms responsible for the enrichment of fluoride in these groundwater. Hydrochemistry, stable isotopes and geochemical simulation were conducted together to investigate the fluoride spatial distribution and the diversity of responsible mechanisms. Our results showed that the spatial distributions of fluoride are different: I) high [F] in fresh shallow groundwater (SGQJ) and II) medium [F] in fresh to brackish deep groundwater (DGQJ) in the Qiji area; and III) medium [F] in brackish shallow groundwater (SGYH) and IV) low [F] in fresh deep groundwater (DGYH) in the Yanhu area. We also found that the fluoride concentration in groundwater is primarily controlled by the dissolution equilibrium of fluorite, as suggested by the correlation between [F] and [Ca]. However, there are other significant mechanisms: 1) for SGQJ, fluoride-bearing minerals (such as fluorite) dissolution, along with moderate evaporation, cation exchange and the more alkaline conditions are the driving factors; 2) for SGYH, the contributing factors are strong evaporation, the salt effect, dissolution of evaporites, gypsum and dolomite, bicarbonate-fluoride competition and anthropogenic activity; 3) for DGQJ, cation exchange, alkaline conditions and competitive adsorption are major factors; and 4) dolomite dissolution promotes the [F] increase in DGYH. Our findings suggest that the hydrogeochemical conditions play key roles in the enrichment of fluoride and that caution should be taken in the future when evaluating fluoride occurrence in groundwater, even in nearby areas.
Show more [+] Less [-]Role of the Nrf2-ARE pathway in perfluorooctanoic acid (PFOA)-induced hepatotoxicity in Rana nigromaculata Full text
2018
Tang, Juan | Jia, Xiuying | Gao, Nana | Wu, Yingzhu | Liu, Zhengquan | Lu, Xiangjun | Du, Qiongxia | He, Jianbo | Li, Ning | Chen, Bin | Jiang, Jinxiao | Liu, Wenli | Ding, Ying | Zhu, Weiqin | Zhang, Hangjun
Perfluorooctanoic acid (PFOA) is widely distributed in various environmental media and is toxic to organisms. This study demonstrated that PFOA induces hepatotoxicity in the frog and evaluated the role of CYP3A and the Nrf2-ARE signaling pathway in regulating responses to PFOA-induced hepatotoxicity. Rana nigromaculata were exposed to 0, 0.01, 0.1, 0.5, or 1 mg/L PFOA solutions in a static-renewal system for 14 days. Liver tissue samples were collected 24 h after the last treatment. Hepatic histology was observed by HE staining and transmission electron microscopy. The oxidative stress levels in the liver were measured. The expression levels of CYP3A, Nrf2, NQO1, and HO-1 mRNA were measured by quantitative reverse transcription–polymerase chain reaction. PFOA-treated frog liver tissue exhibited diffuse cell borders, cytoplasmic vacuolization, broken nuclei, nuclear chromatin margination, and swollen mitochondria. In addition, the livers of PFOA-treated frogs showed a significantly elevated content of reactive oxygen species, malondialdehyde, glutathione and glutathione S-transferase activity compared to the livers of control frogs. However, the glutathione peroxidase activities concomitantly decreased in PFOA-treated frogs compared to those in the control group. Furthermore, compared with control frogs, the expression levels of CYP3A, Nrf2, and NQO1 mRNA significantly increased in PFOA-treated frogs. HO-1 mRNA expression remarkably increased only in groups treated with 0.5 or 1 mg/L PFOA. Our results indicate that PFOA induces hepatotoxicity in a dose-dependent manner. Furthermore, the results of the comparison analysis between different gender groups illustrated that PFOA is more toxic to female frogs than male frogs. Our results demonstrated that PFOA causes liver damage and that CYP3A enhances PFOA-induced female frogs hepatotoxicity are more virulent than male through biotransformation, and the activation of the Nrf2-ARE pathway is induced to protect against hepatotoxicity in Rana nigromaculata, all of which provide the scientific basis for the protection of amphibians against environmental contaminants.
Show more [+] Less [-]River otters (Lontra canadensis) “trapped” in a coastal environment contaminated with persistent organic pollutants: Demographic and physiological consequences Full text
2018
Huang, Andrew C. | Nelson, Cait | Elliott, John E. | Guertin, Daniel A. | Ritland, Carol | Drouillard, Ken | Cheng, Kimberly M. | Schwantje, Helen M.
Productive coastal and estuarine habitats can be degraded by contaminants including persistent organic pollutants (POPs) such as PCBs, dioxins, and organochlorine insecticides to the extent of official designation as contaminated sites. Top-predatory wildlife may continue to use such sites as the habitat often appears suitable, and thus bioaccumulate POPs and other contaminants with potential consequences on their health and fitness. Victoria and Esquimalt harbours are located on southern Vancouver Island, British Columbia (BC) and are federally designated contaminated sites due mainly to past heavy industrial activities, such as from shipyards and sawmills. We collected scat samples from river otters (Lontra canadensis) throughout an annual cycle, and combined chemical analysis with DNA genotyping to examine whether the harbour areas constituted a contaminant-induced ecological trap for otters. We confirmed spatial habitat use by radio telemetry of a subsample of otters. Fifteen percent of otter scat contained PCB concentrations exceeding levels considered to have adverse effects on the reproduction of mink (Neovison vison), and there were significant positive correlations between concentrations of PCBs and of thyroid (T3) and sex (progesterone) hormones in fecal samples. Radio telemetry data revealed that otters did not show directional movement away from the harbours, indicating their inability to recognize the contaminated site as a degraded habitat. However, analysis and modeling of the DNA genotyping data provided no evidence that the harbour otters formed a sink population and therefore were in an ecological trap. Despite the highly POP-contaminated habitat, river otters did not appear to be adversely impacted at the population level. Our study demonstrates the value of combining chemical and biological technologies with ecological theory to investigate practical conservation problems.
Show more [+] Less [-]