Refine search
Results 911-920 of 4,896
Toxicity beyond accumulation of Titanium after exposure of Mytilus galloprovincialis to spiked seawater
2019
Monteiro, Rui | Costa, Silvana | Coppola, Francesca | Freitas, Rosa | Vale, Carlos | Pereira, Eduarda
Mytilus galloprovincialis was exposed to seawater spiked with 5, 50 and 100 μg L⁻¹ of Titanium (Ti) for 14 days. Seawater was renewed after 96 h and new addition of Ti was done. A parallel experiment conducted in the absence of mussels showed that during the first 24 h after spiking, Ti concentrations in seawater rapidly decreased to values below 2 μg L⁻¹. For this reason, along the entire experimental period (14 days) mussels were exposed to Ti during two short periods, in the beginning of the experiment and after seawater renewal. At 96 h, mussels exhibited low Ti concentrations (<2.5 μg g⁻¹), close or not significantly different from a control condition (1.6 μg g⁻¹ in the absence of Ti). Despite the low accumulated Ti in mussels’ tissues after both experimental periods (96 h and 14 days), biochemical markers indicated that mussels developed two main strategies: reduction of their metabolic capacity to avoid the uptake of Ti, and antioxidant and biotransformation defense mechanisms, such as the activation of SOD, CAT, GPx and GSTs enzymes that were triggered to prevent cellular damages. Nevertheless, oxidative stress occurred after 96 h or 14 days. The current study highlights that alterations of biological activity of M. galloprovincialis exposed to Ti goes beyond its accumulation in tissues.
Show more [+] Less [-]Applying linear and nonlinear models for the estimation of particulate matter variability
2019
Tzanis, Chris G. | Alimissis, Anastasios | Philippopoulos, Kostas | Deligiorgi, Despina
In this study, data collected from an urban air quality monitoring network are being used for the purpose of evaluating various methodologies used for spatial interpolation in the context of proposing an effective yet simple to apply scheme for PM spatial point estimations. The examined methods are the Inverse Distance Weighting, two linear regression models, the Multiple Linear Regression and the Linear Mixed Model, along with a Feed Forward Neural Network (FFNN) model. These schemes utilize daily PM₁₀ and PM₂.₅ concentrations collected from five and three air quality monitoring sites respectively. In order to obtain the resulted estimations, the leave-one-out cross-validation methodology is used for all methods. The evaluation of their predictive ability is performed by using a combination of difference and correlation statistical measures, scatter plots and statistical tests. The results indicate the usefulness of FFNNs as they are found to be statistically significantly superior for modelling the particulate matter spatial variability. The model performance statistics show that in most cases the error values are considerably lower for the FFNN model. Additionally, the rank and Wilcoxon rank tests reveal that the null hypothesis for equal predictive accuracy is rejected for the majority of monitoring sites and schemes (values lower than the critical t-value). According to the comparison results, the FFNN model is selected for forecasting air quality limit exceedances set by the European Union and World Health Organization air quality standards. For two monitoring sites in which the largest number of exceedances occurred, the probability of detection is high while the probability of false detection is very low, further establishing the neural networks’ predictive ability.
Show more [+] Less [-]Improved accuracy of environmentally relevant parameter estimates derived from biodegradation assays
2019
Escuder-Gilabert, Laura | Martín-Biosca, Yolanda | Sagrado, Salvador | Medina-Hernández, María José
Biodegradation assays involve both biodegradation and analytical processes which can be affected by systematic errors, among others. These errors can affect all the environmentally relevant parameters related to biodegradability, enantioselectivity (in the case of chiral compounds), kinetic parameters and persistence of chemicals. However, such impacts have never been well-characterized. In this work, calculations and models used for a long time are studied by simulating systematic errors at the 5% level, which affect independently the analytical calibration step and the biodegradation process. The impact of these errors is also compared with those obtained from an alternative approach: recently proposed equations and a novel model (a Monod modified version) developed in this work. All simulations are compatible with an environmentally relevant pollutant concentration. The results suggest a high degree of minimization (or even cancelation) of the systematic error impact using the alternative approach respect to the conventional one. These findings can be interpreted either in view of achiral or chiral pollutants. The present work can have a positive impact in the area of risk assessment of new pollutants and hazardous materials.
Show more [+] Less [-]Determination of multiple mycotoxins in paired plasma and urine samples to assess human exposure in Nanjing, China
2019
Fan, Kai | Xu, Juanjuan | Jiang, Keqiu | Liu, Xing | Meng, Jiajia | Di Mavungu, José Diana | Guo, Wenbo | Zhang, Zhiqi | Jing, Jun | Li, Hongru | Yao, Bing | Li, Hui | Zhao, Zhihui | Han, Zheng
This study was conducted to investigate mycotoxin exposure in 260 rural residents (age 18–66 years) in Nanjing, China. Paired plasma and first morning urine samples were analyzed for 26 mycotoxin biomarkers, including 12 parent mycotoxins and 14 mycotoxin metabolites, by an ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method. Mycotoxins and their metabolites were detected in 95/260 (36.5%) plasma samples and 144/260 (55.4%) urine samples. The most prevalent mycotoxin in plasma was ochratoxin A (OTA), with the incidence of 27.7% (range 0.312–9.18 μg/L), while aflatoxin B₁-lysine (AFB₁-lysine) (incidence 19.6%, range 10.5–74.5 pg/mg albumin), fumonisin B₁ (FB₁) (incidence 2.7%, range 0.305–0.993 μg/L), deoxynivalenol (DON) (incidence 2.3%, range 1.39–5.53 μg/L), zearalenone (ZEN) (incidence 6.5%, range 0.063–0.418 μg/L) and zearalanone (ZAN) (incidence 1.2%, range 0.164–0.346 μg/L) were also detected in plasma samples. Deoxynivalenol-15-glucuronide (DON-15-GlcA) was the most frequently detected urinary mycotoxin, with the incidence of 43.8% (range 0.828–37.7 μg/L). DON (incidence 10.0%, range 1.39–14.7 μg/L), DON-3-glucuronide (DON-3-GlcA) (incidence 15.8%, range 0.583–5.84 μg/L), aflatoxin M₁ (AFM₁) (incidence 10.4%, range 0.125–0.464 μg/L), ZAN (incidence 7.7%, range 0.106–1.82 μg/L), ZEN (incidence 6.9%, range 0.056–0.311 μg/L), FB₁ (incidence 3.1%, range 0.230–1.33 μg/L), T-2 toxin (incidence 2.3%, range 0.248–3.61 μg/L) and OTA (incidence 1.2%, range 0.153–0.557 μg/L) were also found in urine samples. Based on the plasma or urinary levels, the daily intakes of AFB₁, FB₁, ZEN, DON and OTA were estimated. The results showed that the investigated rural dwellers were exposed to multiple mycotoxins, especially to carcinogenic mycotoxin AFB₁ with a mean daily intake of 0.41 μg/kg·bw/day, thereby underlining a potential public health concern. To the best of our knowledge, this is the first study to evaluate human exposure to mycotoxins with direct measurements of multiple mycotoxins in paired plasma and urine samples for over 200 subjects of a single population.
Show more [+] Less [-]Removal of seven endocrine disrupting chemicals (EDCs) from municipal wastewater effluents by a freshwater green alga
2019
Bai, Xuelian | Acharya, Kumud
The present endocrine disrupting chemicals (EDCs) in wastewater effluents due to incomplete removal during the treatment processes may cause potential ecological and human health risks. This study evaluated the removal and uptake of seven EDCs spiked in two types of wastewater effluent (i.e., ultrafiltration and ozonation) and effluent cultivated with the freshwater green alga Nannochloris sp. In ultrafiltration effluent cultivated with Nannochloris sp. for 7 days, the removal rate of 17β-estradiol (E2), 17α-ethinylestradiol (EE2), and salicylic acid (SAL) was 60%; but Nannochloris sp. did not promote the removal of other EDCs studied. The algal-mediated removal of E2, EE2, and SAL was attributed to photodegradation and biodegradation. Triclosan (TCS) underwent rapid photodegradation regardless of adding algae in the effluent with 63%–100% removal within 7 days. Triclosan was also found associated with algal cells immediately after adding algae, and thus the primary mechanisms involved were photodegradation and bioremoval (i.e., bioadsorption and bioaccumulation). After algal cultivation, TCS still has a bioaccumulation potential to pose high risks within the food web and the endocrine disrupting properties of the residual estrogens in the effluent are not eliminated. Algal cultivation can be exploited to treat wastewater effluents but the removal efficiencies of EDCs highly depend on chemical types.
Show more [+] Less [-]Characterization of the chemical components and bioreactivity of fine particulate matter produced during crop-residue burning in China
2019
Chuang, Hsiao-Chi | Sun, Jian | Ni, Haiyan | Tian, Jie | Lui, Ka Hei | Han, Yongming | Cao, Junji | Huang, Ru-Jin | Shen, Zhenxing | Ho, Kin-Fai
Five types of crop residue (rice, wheat, corn, sorghum, and sugarcane) collected from different provinces in China were used to characterize the chemical components and bioreactivity properties of fine particulate matter (PM2.5) emissions during open-burning scenarios. Organic carbon (OC) and elemental carbon (EC) were the most abundant components, contributing 41.7%–54.9% of PM2.5 emissions. The OC/EC ratio ranged from 8.8 to 31.2, indicating that organic matter was the dominant component of emissions. Potassium and chloride were the most abundant components in the portion of PM2.5 composed of water-soluble ions. The coefficient of divergence ranged from 0.27 to 0.51 among various emissions profiles. All samples exposed to a high PM2.5 concentration (150 μg/mL) exhibited a significant reduction in cell viability (A549 lung alveolar epithelial cells) and increase in lactic dehydrogenase (LDH) and interleukin 6 levels compared with those exposed to 20 or 0 μg/mL. Higher bioreactivity (determined according to LDH and interleukin 6 level) was observed for the rice, wheat, and corn samples than for the sorghum straw samples. Pearson's correlation analysis suggested that OC, heavy metals (chromium, manganese, iron, nickel, copper, zinc, tin, and barium), and water-soluble ions (fluoride, calcium, and sulfate) are the components potentially associated with LDH production.
Show more [+] Less [-]Organic molecular markers in marine aerosols over the Western Mediterranean Sea
2019
Romagnoli, Paola | Balducci, Catia | Perilli, Mattia | Esposito, Giulio | Cecinato, Angelo
A scientific campaign was undertaken along the Western sector of the Mediterranean Sea in the summer 2015 (26th Jun to 13th Jul), with the goal of gathering information about organic contaminants affecting marine aerosol over the Italian seas and with a special focus on changes in composition due to sources. 24 PM₁₀ atmospheric samples in total were chemically characterized, including polycyclic aromatic hydrocarbons (PAHs), aliphatic hydrocarbons (n-alkanes) and phthalate esters. Contemporarily, regulated gaseous toxicants (i.e. ozone, nitrogen oxides and sulfur dioxide) and meteorological parameters were recorded. Samplings were carried out inshore in front of harbors (N = 7) and along the cruise, both during the vessel shipping (N = 11, transects) and at its stops offshore (N = 6). Total PAH concentrations ranged from 0.03 to 1.94 ng/m³ and raised close to harbors and coastal sites, confirming that continental sources were responsible for the strong increase of pollution levels there compared to offshore. The percent composition and diagnostic ratio rates of PAHs were different for harbors, while transects were in agreement with offshore stops, possibly due to the different impact of pollution sources. n-Alkanes (C₂₁C₃₈) and the corresponding carbon preference index rates (CPI) were assessed; their values ranged 8.7–90 ng/m³ and 1.1–2.9 respectively, which suggested that fossil fuel combustion was the dominant source, though biogenic emission could contribute. Alkyl phthalates revealed wide variability in concentrations among aerosol samples. Moreover, long-range atmospheric transport and particle ageing effect induced by photo-oxidants were important factors controlling the composition of organic aerosols in the Mediterranean Sea air.
Show more [+] Less [-]Dietary exposure and risk assessment of exposure to hexabromocyclododecanes in a Taiwan population
2019
Lee, Ching-Chang | Zhang, Weixiang | Chen, Hsiu-Ling
Hexabromocyclododecane (HBCD) is commonly used in commercial products and factories. HBCDs can be detected in the air, bioaccumulated deposits, water, soil, sediments, and in biota and foodstuffs in the food-chain because they are not chemically bound to the polymer. We determined the levels of α-, β-, and γ-HBCDs in 270 foodstuffs and the doses of HBCDs Taiwanese are normally exposed to. We also wanted to create a strategy of risk management for HBCDs based on margins of exposure (MOE). HBCDs were frequently detectible in fish, seafood, and poultry. Their highest concentrations were in fish, oil, poultry, and livestock. The highest estimated daily intake was in 0- to 3-year-olds (1.576 ng/kg/day), and lower in 3- to 6- (1.064 ng/kg/day), 6- to 12- (0.899 ng/kg/day), and lowest in 12- to 16- (0.632 ng/kg/day) year-olds. The exposure doses to HBCDs indicated no health concern for Taiwanese. Except for fish, significant concentrations of α- and γ-HBCDs were detected in many other foodstuffs, which might indicate that exposure to HBCD is a relatively recent problem. Therefore, one goal of a management policy should be to follow-up the flow direction of HBCDs in Taiwan.
Show more [+] Less [-]Comparative contributions of copper nanoparticles and ions to copper bioaccumulation and toxicity in barnacle larvae
2019
Yang, Li | Wang, Wen-Xiong
Cu nanoparticles (CuNPs) have been widely used in numerous products, and may become a potential threat to marine organisms, but their behavior in the marine environments and potential toxicity to marine organisms remain little known. In the present study, we investigated the behavior of CuNPs in seawater, as well as the toxicity and bioaccumulation of CuNPs and copper sulfate (CuSO4) in barnacle larvae (Balanus amphitrite), a dominant fouling invertebrate in marine environment. CuNPs tended to aggregate in natural seawater and released Cu ion rapidly into seawater. The aggregation and release were especially higher at a lower concentration of CuNPs, e.g., 94–96% of CuNPs were released as Cu ions at 20 μg/L after 24 h. The larger size of CuNPs (40 nm) tended to display a higher solubility than the 20 nm CuNPs did. Humic acids enhanced the aggregation and inhibited the dissolution of CuNPs, and had a protective effect on the survival of nauplii II at higher Cu concentrations (100–200 μg/L). Comparison of the lethal concentrations showed that CuNPs were generally less toxic to the two stages of barnacle larvae (nauplii II and VI) than the Cu ions. The calculated 48-h LC50 values for nauplii II were 189.5 μg/L, 123.2 μg/L, and 89.8 μg/L for 20 nm CuNPs, 40 nm CuNPs, and CuSO4, respectively. However, the lethal concentrations of Cu bioaccumulation in the barnacle larvae were comparable between CuNPs and Cu ions when expressed by the actual tissue Cu bioaccumulation. Barnacle larval settlement decreased with an increase of Cu concentrations of both CuNPs and CuSO4, and was significantly inhibited at 100 μg/L CuSO4 and 150 μg/L CuNPs. Our results indicated that the toxicity of CuNPs could not be solely explained by the released Cu ions, and both CuNPs and the released Cu ion contributed to their toxicity and bioaccumulation in barnacle larvae.
Show more [+] Less [-]Prenatal exposure to diesel exhaust PM2.5 programmed non-alcoholic fatty liver disease differently in adult male offspring of mice fed normal chow and a high-fat diet
2019
Wang, Xiaoke | Yang, Yuxue | Zhu, Piaoyu | Wu, Yifan | Jin, Yang | Yu, Shali | Wei, Haiyan | Qian, Muzhou | Cao, Weiming | Xu, Shenya | Liu, Yingqi | Chen, Gang | Zhao, Xinyuan
Air pollution is one of the leading preventable threats to public health. Emerging evidence indicates that exposure to environmental stressors is associated with abnormal foetal development. However, how prenatal exposure to diesel exhaust PM2.5 (DEP) predisposes adult offspring to the development of non-alcoholic fatty liver disease (NAFLD) remains unclear. To examine this, C57BL/6J mice were exposed to DEP or a vehicle before conception and during pregnancy and fed normal chow or a high-fat diet. Then, the hepatic fatty accumulation in the adult male offspring and possible molecular mechanisms were assessed. Our data showed that prenatal exposure to DEP on normal chow led to hepatic steatosis in adult male offspring with normal liver function. However, prenatal DEP exposure relieved the hepatic steatosis and liver function in offspring of mice fed a high-fat diet. Furthermore, prenatal exposure to DEP on normal chow increased lipogenesis and worsened fatty acid oxidation. The counteractive effect of prenatal DEP exposure on high-fat-diet-induced hepatic steatosis was produced through upregulated adenosine 5′-monophosphate-activated protein kinase, and this improved lipogenesis and fatty acid oxidation. Collectively, prenatal exposure to DEP programmed the development of NAFLD differently in the adult male offspring of mice fed normal chow and a high-fat diet, showing the pleotrophic effects of exposure to adverse environmental factors in early life.
Show more [+] Less [-]