Refine search
Results 911-920 of 6,473
Indoor air pollution (IAP) and pre-existing morbidities among under-5 children in India: are risk factors of coronavirus disease (COVID-19)?
2020
Saha, Jay | Chouhan, Pradip
Globally, the Coronavirus disease (COVID-19) outbreak is linked with air pollution of both indoor and outdoor environments and co-morbidities conditions of human beings. To find out the risk factor zones associated with Coronavirus disease among under-five children using pre-existing morbidity conditions and indoor air pollution (IAP) environmental factors and also with current fatality and recovery rate of COVID-19 disease in India. Data was utilized from the 4th round of the National Family Health Survey (NFHS), 2015–16, and from the Ministry of Health and Family Welfare (MoHFW) on 18th May 2020. Mean, standard deviation, and Z-score statistical methods have been employed to find out the risk factor zones i.e. to execute the objective. Findings of this study are, the states and UTs which have more likely to very higher to higher risk factors or zones of Coronavirus disease (COVID-19) are Mizoram (1.4), Meghalaya (1.27), Uttarakhand (0.92), West Bengal (0.73), Uttar Pradesh (0.66), Jammu and Kashmir (0.44), Odisha (0.33), Madhya Pradesh (0.21), Jharkhand (0.20), Bihar (0.19), Maharashtra (0.16 risk score), compared to UTs like Assam (-0.12), Rajasthan (-0.13), Goa (-0.14), Manipur (-0.17), Chandigarh (-0.19), Haryana (-0.22), Delhi (-0.27) have moderate risk factors of COVID-19, and the states and UTs like Daman and Diu (-1.18), Sikkim (-0.98), Andaman and Nicobar Islands (-0.84), Kerala (-0.69), Dadra and Nagar Haveli (-0.68), Arunachal Pradesh (0.-53), Karnataka (-0.42), and Nagaland (-0.36) have very low-risk zones of COVID-19 deaths. From a research viewpoint, there is a prerequisite need for epidemiological studies to investigate the connection between indoor air pollution and pre-existing morbidity which are associated with COVID-19. Well-built public health measures, including rapidly searching in high focus areas and testing of COVID-19, should be performed in vulnerable areas of COVID-19.
Show more [+] Less [-]Comparison of pollutant source tracking approaches: Heavy metals deposited on urban road surfaces as a case study
2020
Hong, Nian | Yang, Bo | Tsang, Daniel C.W. | Liu, An
A range of source tracking approaches have been developed to identify sources in the environmental pollution research field. A comparison of source tracking approaches is essential for a better understanding and practical applications of these approaches. This study compared the commonly used source tracking approaches, namely positive matrix factorization (PMF), Unmix, flag element ratio (FER), and chemical mass-balance based stochastic approach (SCMD). A case study was illustrated for tracing heavy metals (Pb, Zn, Cr, Cu, and Ni) attached to road deposited sediments, which can significantly influence urban road stormwater quality. The results indicated that the accuracy of PMF and Unmix are affected by the number of chemical species used and whether useful markers can be identified for particular sources. However, this does not have an essential influence on FER and SCMD. PMF and Unmix are easier on data preparation and calculation processes but more difficult for source identification process than FER and SCMD. This study also provided recommendations related to the selection of source tracking approach based on different study scenarios and result requirements. These study results are able to provide important guidance for undertaking effective source tracking and devising environmental pollution mitigations.
Show more [+] Less [-]Sources and spatio-temporal distribution of aerosol polycyclic aromatic hydrocarbons throughout the Tibetan Plateau
2020
Zheng, Huijun | Kang, Shichang | Chen, Pengfei | Li, Quanlian | Tripathee, Lekhendra | Maharjan, Linda | Guo, Junming | Zhang, Qianggong | Santos, Ewerton
With the recent rapid development of urbanization, atmospheric pollutants such as polycyclic aromatic hydrocarbons (PAHs) have attracted wide attention, particularly in remote regions. The Tibetan Plateau (TP), known as the third pole is adjacent to areas with heavy atmospheric pollution, such as South and East Asia. However, the spatial distribution and sources of PAHs on the TP remain unclear. Thus, we investigated the sources and spatio-temporal distributions of PAHs on the TP by combining aerosol sample data from six sites, including Ngari (NG), Laohugou (LHG), Beiluhe (BLH), Nam Co (NMC), Everest (EV), and Yulong (YL), in 2014 and 2016. The average concentrations of 15 PAHs at the six sites ranged from 3.4 to 15.2 ng m⁻³, with a decreasing trend from the marginal to inner areas of the plateau. The highest concentration was that in YL in the southeastern part of the TP, with an average of 15.2 ng m⁻³. The PAH concentrations in NG, NMC, and YL were higher in autumn and winter and lower in summer. High molecular weight PAHs usually exists in the particulate phase whereas tricyclic PAHs can change from particulate to gaseous phase, therefore it can indicate long-range transport. Tricyclic PAHs were the dominant PAHs on the TP (44%–58%), indicating long-range atmospheric transport as the major source of PAHs. Principal component analysis (PCA) and diagnostic ratio analysis showed that biomass and coal combustion were the major sources of PAHs in inland areas of the TP; however, marginal plateau areas were affected by fossil fuel emissions. Compared with levels in Beijing and other urban sites, the toxic equivalent quantity (TEQ) was low (0.36–1.06 ng m⁻³), suggesting a low risk to human and ecosystem health.
Show more [+] Less [-]Interactive effects of arsenic and antimony on Ipomoea aquatica growth and bioaccumulation in co-contaminated soil
2020
Egodawatta, Lakmini P. | Holland, Aleicia | Koppel, Darren | Jolley, Dianne F.
Antimony (Sb) is an emerging contaminant and until recently it was assumed to behave in a similar way to arsenic (As). Arsenic and Sb often co-occur in contaminated sites, yet most investigations consider their toxicity to plants singly. More research is needed to understand the interactions between As and Sb in soils and plants. This study investigated the interactive effect of As and Sb in terms of soil bioavailability, plant toxicity and bioaccumulation on the commercially important agricultural plant, water spinach (Ipomoea aquatica) using a pot experiment. Plants were exposed to As and Sb individually (As ₍ᵢₙdᵢᵥᵢdᵤₐₗ₎, Sb ₍ᵢₙdᵢᵥᵢdᵤₐₗ₎) and as a mixture (As + Sb ₍cₒₘbᵢₙₑd₎) at different concentrations. Plant growth was measured using shoot and root dry mass, length and chlorophyll a content of leaves. At the end of the bioassay, bioavailable metalloids were extracted from the soil as per a sequential extraction procedure (SEP) and plant tissue was analysed for metalloid content. For As, there were no differences observed between the bioavailability of As in the As + Sb ₍cₒₘbᵢₙₑd₎ and As ₍ᵢₙdᵢᵥᵢdᵤₐₗ₎ treatments. For Sb, no increase in bioavailability was observed with co-contamination compared to single-Sb exposures for most concentrations except at 1250 mg/kg. Single-Sb was not toxic to I. aquatica shoot dry mass and length, but there was greater shoot Sb accumulation in the As + Sb ₍cₒₘbᵢₙₑd₎ than the Sb ₍ᵢₙdᵢᵥᵢdᵤₐₗ₎ treatment. In contrast, single-As was toxic to I. aquatica growth. When As and Sb were present together in the soil, there was a synergistic toxicity to shoot dry mass (EC₅₀ Toxic Unit (TU) was less than 1) and additive toxicity (EC₅₀ equal to 1 TU) to shoot length. This work shows that the co-occurrence of As and Sb in soil increases Sb bioavailability and can cause synergistic toxicity to an important agricultural crop.
Show more [+] Less [-]Analysis of wintertime O3 variability using a random forest model and high-frequency observations in Zhangjiakou—an area with background pollution level of the North China Plain
2020
Liu, Huazhen | Liu, Junfeng | Liu, Ying | Ouyang, Bin | Xiang, Songlin | Yi, Kan | Tao, Shu
The short-term health effects of ozone (O₃) have highlighted the need for high-temporal-resolution O₃ observations to accurately assess human exposure to O₃. Here, we performed 20-s resolution observations of O₃ precursors and meteorological factors to train a random forest model capable of accurately predicting O₃ concentrations. Our model performed well with an average validated R² of 0.997. Unlike in typical linear model frameworks, variable dependencies are not clearly modelled by random forest model. Thus, we conducted additional studies to provide insight into the photochemical and atmospheric dynamic processes driving variations in O₃ concentrations. At nitrogen oxides (NOₓ) concentrations of 10–20 ppb, all the other O₃ precursors were in states that increased the production of O₃. Over a short timescale, nitrogen dioxide (NO₂) can almost track each high-frequency variation in O₃. Meteorological factors play a more important role than O₃ precursors do in predicting O₃ concentrations at a high temporal resolution; however, individual meteorological factors are not sufficient to track every high-frequency change in O₃. Nevertheless, the sharp variations in O₃ related to flow dynamics are often accompanied by steep temperature changes. Our results suggest that high-temporal-resolution observations, both ground-based and vertical profiles, are necessary for the accurate assessment of human exposure to O₃ and the success and accountability of the emission control strategies for improving air quality.
Show more [+] Less [-]Impact of different environmental particles on degradation of dibutyl phthalate in coastal sediments with and without Cylindrotheca closterium
2020
Zhang, Fan | Zhao, Dongxu | Chi, Jie
This study investigated the impact of different environmental particles at different concentrations (0.2% and 2%, w/w) on biodegradation of dibutyl phthalate (DBP) in sediments with and without Cylindrotheca closterium, a marine benthic diatom. The particles included biochar pyrolyzed at 400 °C, multi-walled carbon nanotube (MWNT), nanoscale zero-valent iron (nZVI) and polyethylene microplastic. In treatments without C. closterium, inhibition effect of the particles on degradation percentage of DBP (up to 15.7% decrement except 1.7% increment for 0.2% nZVI) increased with the increase of particle sorption ability to DBP and particle concentration in general. The results of 16s rDNA sequencing showed that C. closterium was probably the most abundant DBP-degrader, accounting for 20.0–49.3% of the total taxon read numbers. In treatments with C. closterium, inoculation of C. closterium increased the degradation percentage of DBP in all treatments with particle addition by 0.0–11.3%, which increased with the increase of chlorophyll a content in general but decreased with the increase of particle concentration from 0.2% to 2%. The increment was the highest for treatment with 0.2% nZVI addition due to its highest promotion effect on algal growth. In contrast, the increment was the lowest for treatments with MWNT addition due to its strong sorption to DBP and strong inhibition on the growth of C. closterium. Our findings suggested that the environmental particles could influence bioavailability of DBP by sorption and biomass of C. closterium, and thus degradation of DBP in sediments.
Show more [+] Less [-]Extracellular polymeric substances alter cell surface properties, toxicity, and accumulation of arsenic in Synechocystis PCC6803
2020
Naveed, Sadiq | Yu, Qingnan | Zhang, Chunhua | Ge, Ying
Arsenic (As) contamination of water poses severe threats to human health and thus requires effective remediation methods. In this study, Synechocystis PCC6803, a model cyanobacterium common in aquatic environments, was used to investigate the role of extracellular polymeric substances (EPS) in As toxicity, accumulation, and transformation processes. We monitored the growth of Synechocystis with As exposure, measured the zeta potential and binding sites on the cell surface, and analysed As accumulation and speciation in Synechocystis cells with and without EPS. After EPS removal, the binding sites and zeta potential of the cell surface decreased by 44.43% and 31.9%, respectively. The growth of Synechocystis decreased 49.4% and 43.7% with As⁽ᴵᴵᴵ⁾ and As⁽ⱽ⁾ exposure, and As accumulation in the cells decreased by 12.8–44.5% and 14–42.7%, respectively. As absorption was enhanced in cells with EPS removed. The oxidation of As⁽ᴵᴵᴵ⁾ and reduction of As⁽ⱽ⁾ were significantly greater in cells with intact EPS compared to those with EPS removed. Fourier transform infrared spectroscopy (FTIR) showed that functional groups of EPS and Synechocystis cells, including –NH, –OH, CO, and CC, interacted with As species. Together the results of this work demonstrate that EPS have significant impacts on cell surface properties, thereby affecting As accumulation and transformation in Synechocystis PCC6803. This work provides a basis for using EPS to remedy As pollution in aquatic environments.
Show more [+] Less [-]Combination of compositional data analysis and machine learning approaches to identify sources and geochemical associations of potentially toxic elements in soil and assess the associated human health risk in a mining city
2020
Tepanosyan, Gevorg | Sahakyan, Lilitʻ | Maghakyan, Nairuhi | Saghatelyan, Armen
Mining activities change the chemical composition of the environment and have negative reflection on people’s health and there is no single measure to deal with adverse consequences of mining activities, as each case is specific and needs to be understood and mitigated in a unique way. In this study, the combination of compositional data analysis (CoDA), k-means algorithm, hierarchical cluster analysis applied to reveal the geochemical associations of potentially toxic elements (PTE) in soil of Alaverdi city (Armenia) (Ti, Fe, Ba, Mn, Co, V, Pb, Zn, Cu, Cr, Mo, As). Additionally, to assess PTE-induced health risk, two commonly used approaches were used. The obtained results show that the combination of CoDA and machine learning algorithms allow to identify and describe three geochemical associations of the studied elements: the natural, manmade and hybrid. Moreover, the revealed geochemical associations were linked to the natural pattern of distribution of the element concentrations including the influence of the natural mineralization of the parent rocks, as well as the emission from the copper smelter and urban management related activities. The health risk assessment using the US EPA method demonstrated that the observed contents of studied elements are posing a non-carcinogenic risk to children in the entire territory of the city. In the case of adults, the non-carcinogenic risk was identified in areas situated close to the copper smelter. The Summary pollution index (Zc) values were in line with the results of the US EPA method and indicated that the main residential part of the city was under the hazardous pollution level suggesting the possibility of increase in the overall incidence of diseases among frequently ill individuals, children with chronic diseases and functional disorders of vascular system. The obtained results indicated the need for further in-depth studies with special focus on the synergic effect of PTE.
Show more [+] Less [-]Transformation and removal of imidacloprid mediated by silver ferrite nanoparticle facilitated peroxymonosulfate activation in water: Reaction rates, products, and pathways
2020
Kan, Qihui | Lu, Kun | Dong, Shipeng | Shen, Danlei | Huang, Qingguo | Tong, Yang | Wu, Wei | Gao, Shixiang | Mao, Liang
Imidacloprid (IMI) is one of the most extensively used chlorinated organic pesticides and its widespread occurrence makes it attract increased public concern and scientific interest. Peroxymonosulfate (PMS) activation has been widely studied for the elimination of organic pollutants from water. But few studies are focused on their heterogeneous catalytic performance towards imidacloprid especially with the presence of silver ferrite nanoparticles (nAgFeO₂)-based catalysts. Herein, the catalyst, nAgFeO₂, was prepared via a co-precipitation method, and further applied to activate PMS for the removal of imidacloprid (IMI). Our results demonstrated that the prepared nAgFeO₂ significantly promoted the activation of PMS for removing IMI, and the removal of IMI followed a pseudo first-order kinetics model with the corresponding nAgFeO₂ dosage. Electron paramagnetic resonance (EPR) and quenching tests revealed the singlet oxygen (¹O₂)-mediated nonradical pathway, instead of hydroxyl radical (•OH) or sulfate radical (SO4•−), played the dominant role in the degradation of IMI. Eight products were identified and the degradation pathways of IMI were proposed. It is postulated that the primary site at the C-1 position of IMI was more easily attacked by the •OH yielding (6-chloropyridin-3-yl) methanol). While the site at the amidine nitrogen (2) of IMI was more likely attacked by the ¹O₂, and then reacted with •OH to produce 5-hydroxy imidacloprid. Overall, this study provides insights into the mechanisms of nonradical oxidation processes based on PMS for the elimination of pesticides from water, broadening the application of silver ferrite nanoparticles in wastewater treatment.
Show more [+] Less [-]The abatement of acid rain in Guizhou province, southwestern China: Implication from sulfur and oxygen isotopes
2020
Zelong Yan, | Xiaokun Han, | Lang, Yunchao | Guo, Qinjun | Li, Siliang
The high frequency of acid rain in southern China has captured public and official concern since 1980s. Subsequently, gas emission reduction measures have been implemented to improve the air quality. Variations in SO₂ emission intensities can influence the sulfur and oxygen isotopic compositions of sulfate in rainwater, since atmospheric sulfate is mainly formed via the oxidation of sulfur gases from natural and anthropogenic sources. To evaluate the impacts of emission reduction measures on atmospheric sulfate, the seasonal and long-term trends in stable isotopic compositions of sulfate in rainwater in Guizhou province, southwestern China have been investigated based on rainwater samples collected from June 2016 to June 2018 and literature investigation (2000–2010).The results reveal that coal combustion remains a major contributor to sulfate in rainwater, although its SO₂ emission has significantly decreased over the past two decades. The δ³⁴Sₛᵤₗfₐₜₑ and δ¹⁸Oₛᵤₗfₐₜₑ values in rainwater are negatively correlated and have significant seasonal changes. The seasonality in δ³⁴Sₛᵤₗfₐₜₑ has been interpreted as due to the changes in contributions of dimethyl sulfide and coal combustion, while the seasonal pattern of δ¹⁸Oₛᵤₗfₐₜₑ is consistent with that of δ¹⁸Owₐₜₑᵣ values, indicating sulfate in rainwater is mainly formed by heterogeneous oxidation of SO₂. Combined with the data from previous studies (Xiao and Liu, 2002; Liu, 2007; Xiao et al., 2009; Xiao et al., 2014), we found that the volume weighted mean δ³⁴S values of sulfate in rainwater in Guizhou province show a marked increase between 2001 and 2018, indicating that the ³⁴S-depleted SO₂ emission from coal combustion has declined during this period. Furthermore, the synchronous changes in δ³⁴S values, sulfate concentration and pH values of rainwater suggest that the frequency of acid rain in Guizhou province has dropped over the past two decades, which is likely to result from the emission reduction measures taken in Guizhou province.
Show more [+] Less [-]