Refine search
Results 941-950 of 7,240
Endophytic fungus Serendipita indica reduces arsenic mobilization from root to fruit in colonized tomato plant
2022
Shukla, Jagriti | Mohd, Shayan | Kushwaha, Aparna S. | Narayan, Shiv | Saxena, Prem N. | Bahadur, Lal | Mishra, Aradhana | Shirke, Pramod Arvind | Kumar, Manoj
The accumulation of arsenic in crop plants has become a worldwide concern that affects millions of people. The major source of arsenic in crop plants is irrigation water and soil. In this study, Serendipita indica, an endophytic fungus, was used to investigate the protection against arsenic and its accumulation in the tomato plant. We found that inoculation of S. indica recovers seed germination, plant growth and improves overall plant health under arsenic stress. A hyper-colonization of fungus in the plant root was observed under arsenic stress, which results in reduced oxidative stress via modulation of antioxidative enzymes, glutathione, and proline levels. Furthermore, fungal colonization restricts arsenic mobilization from root to shoot and fruit by accumulating it exclusively in the root. We observed that fungal colonization enhances the arsenic bioaccumulation factor 1.48 times in root and reduces the arsenic translocation factor by 2.96 times from root to shoot and 13.6 times from root to fruit compared to non colonized plants. Further, investigation suggests that S. indica can tolerate arsenic by immobilizing it on the cell wall and accumulating it in the vacuole. This study shows that S. indica may be helpful for the reduction of arsenic accumulation in crops grown in arsenic-contaminated agriculture fields.
Show more [+] Less [-]Air pollutant emission and reduction potentials from the sintering process of the iron and steel industry in China in 2017
2022
Liu, Jun | Wang, Si | Yi, Honghong | Tang, Xiaolong | Li, Zhangliang | Yu, Qingjun | Zhao, Shunzheng | Gao, Fengyu | Zhou, Yuansong | Wang, Yaxin
The iron and steel industry (ISI) is one of the most energy-intensive industries in China, which makes a substantial contribution to the emissions of air pollutants. Among the various manufacturing processes, sintering is the major emitting process, which shares over half of the emissions of sulfur dioxide (SO₂), nitrogen oxide (NOₓ) and particulate matter (PM) for the entire industry. In this study we made a comprehensive evaluation of the air pollutant emissions from the sintering process of China's ISI in 2017 based on the Continuous Emission Monitoring System (CEMS) database and estimated the future reduction potentials. We found that there was a general decreasing trend of emission concentrations in the sintering flue gas in response to the strengthened emission control policies, but the mild increase of the oxygen content in the second half of the year flattened the decreasing trend, indicating the necessity for simultaneous control of the oxygen content in the flue gas. Despite the relative high standard-reaching rates of 90% to the emission concentration limits in GB 28662-2012, the standard-reaching rates to the ultra-low emission standards were only 12%, 40% and 27% for NOₓ, SO₂ and PM respectively, with the lowest value mostly occurred in the western provinces. In 2017, the NOₓ, SO₂ and PM emissions from the sintering process were 378.6 kt, 169.0 kt and 51.9 kt, respectively. If the ultra-low emission standards were met, the corresponding NOₓ, SO₂ and PM emissions would decrease by 69.9%, 52.9%, and 56.4% respectively, illustrating large emission reducing potentials by achieving the ultra-low emission standards.
Show more [+] Less [-]Does exposure to environmental 2,4-dichlorophenoxyacetic acid concentrations increase mortality rate in animals? A meta-analytic review
2022
Silva, Ana Paula da | Morais, Elizete Rodrigues | Oliveira, Elton Celton | Ghisi, Nédia de Castilhos
The 2,4-dichlorophenoxyacetic acid (2,4-D) is an auxinic herbicide widely used in agriculture that is effective in controlling weeds. It is directly applied to the soil, to ponds or sprayed onto crops; thus, it can progressively accumulate in environmental compartments and affect non-target organisms. The aim of the present meta-analytic review is to investigate the toxic effects of 2,4-D, based on a compilation of results from different studies, which were synthesized to form a statistically reliable conclusion about the lethal effect of potentially ecological concentrations of 2,4-D in several animal species. The search was carried out in the Web of Science and Scopus databases. After the selection process was over, 87 datasets were generated and analyzed. The overall effect has indicated significant increase in the mortality rate recorded for animals exposed to environmental concentrations of 2,4-D compared to the control in the experiment (unexposed animals). The segregation of animals into taxonomic categories has shown that fish and birds presented higher mortality rates after exposure to the investigated substance. The present meta-analysis indicated larval and adult animals were susceptible among the ontogenetic development stages. Juvenile individuals exposed to different 2,4-D concentrations did not show significant difference in comparison to the control. Organisms exposed to 2,4-D immersion were the most impacted compared to those exposed by oral, spray and contact. Animals subjected to commercial formulation presented higher mortality rate than the analytical standard. Thus, 2,4-D can, in fact, increase mortality rate in animals, but it depends on species sensitivity, life stage and exposure route. This is the first meta-analytical study evaluating the mortality rate after 2,4-D exposure in several animal species.
Show more [+] Less [-]Anthropogenic emissions of ozone-depleting substance CH3Cl during 2000–2020 in China
2022
Hu, Xiaoyi | Yao, Bo | Fang, Xuekun
Methyl Chloride (CH₃Cl) is the largest source of stratospheric chlorine, which has a significant impact on the depletion of the stratospheric ozone layer. Detailed information on anthropogenic CH₃Cl emissions in China is still lacking. This study establishes a comprehensive bottom-up inventory of anthropogenic CH₃Cl emissions in China during 2000–2020. Results show that China's anthropogenic CH₃Cl emissions have increased significantly, from 34.1 ± 11.6 Gg/yr (gigagrams per year) in 2000 to 128.5 ± 26.5 Gg/yr in 2018 with a slight decrease to 124.9 ± 26.0 Gg/yr in 2020. The main sources of anthropogenic emissions of CH₃Cl in China are chemical production (37.1%), solvent use (35.4%), and coal combustion (13.6%) in 2020. China's contribution to global anthropogenic emissions of CH₃Cl reached almost 50%. Moreover, the ratios of CH₃Cl CFC-11-eq emissions relative to emissions of ozone-depleting substances (ODSs) controlled under the Montreal Protocol in China have increased from 0.8% in 2000 to 11.6% in 2020 and are estimated to continue increasing in the future. In summary, China's anthropogenic CH₃Cl emissions have shown an increasing trend in the past two decades, made a huge contribution to the total global anthropogenic emissions, and presented a potential increasing impact on the depletion of the ozone layer and global warming.
Show more [+] Less [-]Study the effects of dry-wet cycles and cadmium pollution on the mechanical properties and microstructure of red clay
2022
Song, Yu | Wang, Jian-qiang | Chen, Xue-jun | Yu, Si-zhe | Ban, Ru-long | Yang, Xin | Zhang, Xiaochen | Han, Yu
In order to study the effect of cadmium ions on the mechanical properties and micro-structure characteristics of the red clay in Guilin, we have conducted triaxial test and the scanning electron microscope tests to analyze the effects of cadmium ion concentration and the number of dry and wet cycles on the mechanical properties and micro-structure changes of the red clay. The results showed the effects of cadmium ions and dry-wet cycles destroy the structure of red clay. The cohesive force of red clay decreases with the increase of cadmium ion concentration, and the internal friction angle first increases and then decreases. With the rise in the number of dry and wet cycles, the cohesive force of cadmium-contaminated red clay first increases and then decreases, and the angle of internal friction rises gradually. Under the action of different cadmium ion concentrations, the stress-strain curve is strain hardening. With the concentration of cadmium ions increases, the strain hardening becomes more apparent; the peak value reached faster. and the axial strain corresponding to the peak value of the line decreases. With the increase in the number of wet and dry cycles, the volume of cadmium-contaminated red clay shrinks and its compactness increases; it gets the peak shear strength faster during the shearing process, and its peak value becomes larger and larger. The main reason for the phenomenon is that cadmium ions destroy the cementation between the particles. The soil particles are mainly in point contact which loosens the structure of the soil; on the other hand, the thickness of the surface diffusion layer of the clay particles increases through chemical action, The exchange of cations increases the porosity of the soil and weakens its strength. The dry-wet cycle shrinks the volume of the red clay, and the soil particles are mainly in surface contact; as the number of dry-wet cycles increases, the soil particles connection is closer, the soil porosity decreases and the strength increases.
Show more [+] Less [-]Spatio-temporal variations of litter on Qingdao tourist beaches in China
2022
Pervez, Rashid | Lai, Zhongping
Beaches are an integral part of coastal tourism, but they are deteriorated by the beachgoers and recreational activities due to lack of adequate beach environmental awareness and management. Litter is widely distributed in marine and coastal environment and has been considered a severe concern. In China investigations to determine the beach litter abundance and pollution level are limited. The aim of this study is to estimate spatio-temporal distribution and composition of litter on 10 well-known Qingdao tourist beaches, involving pollution level by beach quality indexes. Beach litter was collected within an area of 25 × 25 m² in both summer (May, June and July) and winter (Nov, Dec and Jan) seasons, and was classified into eight categories. The abundance of beach litter was found higher in summer (0.13 ± 0.04 items/m²) than in winter (0.04 ± 0.01 items/m²). Overall, the percentage of plastics were higher in both summer (23.48%) and winter (24.04%) than that of other litter categories. Based on Clean Coast Index, 70% of beaches were very clean, 25% clean, and 5% moderately clean. Beach Grade Index showed that 15% beaches were very good, 5% good, 55% fair, and 25% poor. 85% beaches constituted some quantity of hazardous litter and 15% had no hazardous litter for Hazardous Items index. The findings suggest that the sources of beach litter along Qingdao beaches mainly come from the recreational and tourist activities. The substantial quantity of litter is also being transported by ocean (tides or current), which are finally deposited along beachfront. Despite regular cleaning operation along most of Qingdao beaches, suggested management practices involve mitigation measures, source reduction, change in littering behavior to improve further quality of beaches.
Show more [+] Less [-]Simultaneous removal of arsenic and toxic metals from contaminated soil: Laboratory development and pilot scale demonstration
2022
Morales Arteaga, Juan Francisco | Gluhar, Simon | Kaurin, Anela | Lestan, Domen
Soil chemistry of toxic metalloids and metals differs, making their simultaneous removal difficult. Soil contaminated with As, Pb, Zn and Cd was washed with oxalic acid, Na-dithionite and EDTA solution. Toxic elements were removed from the washing solution by alkalinisation with CaO to a pH 12.5: As was co-precipitated with Fe from Fe-EDTA chelate formed after the soil washing. The toxic metals precipitated after substitution of their EDTA chelates with Ca. The novel method was scaled up on the ReSoil® platform. On average, 60, 76, 29, and 53% of As, Pb, Zn, and Cd were removed, no wastewater was generated and EDTA was recycled. Addition of zero-valent iron reduced the toxic elements’ leachability. Remediation was most effective for As: phytoaccessibility (CaCl₂ extraction), mobility (NH₄NO₃), and accessibility from human gastric and gastrointestinal phases were reduced 22, 104, 6, and 51 times, respectively. Remediation increased pH but had no effect on soil functioning assessed by fluorescein diacetate hydrolysis, dehydrogenase, β-glucosidase, urease, acid and alkaline phosphatase activities. Brassica napus produced 1.9 times more biomass on remediated soil, accumulated no As and 5.0, 2.6, and 9.0 times less Pb, Zn and Cd, respectively. We demonstrated the novel remediation technology as cost-efficient (material cost = 41.86 € t⁻¹) and sustainable.
Show more [+] Less [-]The need for environmental regulation of tires: Challenges and recommendations
2022
Trudsø, Louise Lynn | Nielsen, Maria Bille | Hansen, Steffen Foss | Syberg, Kristian | Kampmann, Kristoffer | Khan, Farhan R. | Palmqvist, Annemette
The interest in tire wear particles (TWPs), generated from abrasion of tires, have gained traction over the past few years, both in regards to quantifying particulate emissions, leaching of different compounds, toxicity, and analytical methods. The life of a tire, from cradle to end-of-life, crosses over different scenarios during its lifetime and transcends environmental compartments and legislative areas, underlining the need for a collective approach. Sustainability for a tire encompasses the use of raw materials, recycling of raw materials, circular economy and material sourcing. The tire industry is currently making significant efforts towards a greener and more sustainable production considering reduction of CO₂-emissions, recycling, material sources and implementing the use of biomass from plants rather than oil-derived alternatives. In this paper, we aim to analyze and discuss the need for environmental regulation of tires in order to provide a series of targeted recommendations for future legislation. Our study shows that the numerous regulations related to tires focus on chemicals, manufacturing, raw materials, use of tires on roads, waste handling, safety and polycyclic aromatic hydrocarbons (PAHs) in different life cycle stages of a tire. However, none directly addresses the contribution of TWPs to the environment. Despite the overall good intentions of the existing regulations, there is a lack of focus on the compounds that partition from the tire and disperse in the environment, their mixture effects, and the transformative products from the parent compounds in the environment. Therefore, a renewed focus is needed on risk assessment of complex mixtures like TWPs. Thus, transparency in regard to use of chemicals in TWP, mixtures, minimization of emissions, and capture of particulate pollution should be a priority.
Show more [+] Less [-]Bioaccumulation and trophic magnification of emerging and legacy per- and polyfluoroalkyl substances (PFAS) in a St. Lawrence River food web
2022
Muñoz, Gabriel | Mercier, Laurie | Duy, Sung Vo | Liu, Jinxia | Sauvé, Sébastien | Houde, Magali
Research on per- and polyfluoroalkyl substances (PFAS) in freshwater ecosystems has focused primarily on legacy compounds and little is still known on the presence of emerging PFAS. Here, we investigated the occurrence of 60 anionic, zwitterionic, and cationic PFAS in a food web of the St. Lawrence River (Quebec, Canada) near a major metropolitan area. Water, sediments, aquatic vegetation, invertebrates, and 14 fish species were targeted for analysis. Levels of perfluorobutanoic acid (PFBA) in river water exceeded those of perfluorooctanoic acid (PFOA) or perfluorooctane sulfonate (PFOS), and a zwitterionic betaine was observed for the first time in the St. Lawrence River. The highest mean PFAS concentrations were observed for the benthopelagic top predator Smallmouth bass (Micropterus dolomieu, Σ₆₀PFAS ∼ 92 ± 34 ng/g wet weight whole-body) and the lowest for aquatic plants (0.52–2.3 ng/g). Up to 33 PFAS were detected in biotic samples, with frequent occurrences of emerging PFAS such as perfluorobutane sulfonamide (FBSA) and perfluoroethyl cyclohexane sulfonate (PFECHS), while targeted ether-PFAS all remained undetected. PFOS and long-chain perfluorocarboxylates (C10–C13 PFCAs) dominated the contamination profiles in biota except for insects where PFBA was predominant. Gammarids, molluscs, and insects also had frequent detections of PFOA and fluorotelomer sulfonates, an important distinction with fish and presumably due to different metabolism. Based on bioaccumulation factors >5000 and trophic magnification factors >1, long-chain (C10–C13) PFCAs, PFOS, perfluorodecane sulfonate, and perfluorooctane sulfonamide qualified as very bioaccumulative and biomagnifying. Newly monitored PFAS such as FBSA and PFECHS were biomagnified but moderately bioaccumulative, while PFOA was biodiluted.
Show more [+] Less [-]Exploiting urban roadside snowbanks as passive samplers of organic micropollutants and metals generated by traffic
2022
Müller, Alexandra | Österlund, Heléne | Maršálek, Jiři | Viklander, M.
Stormwater and snowmelt runoff is known to contribute to the deterioration of quality of urban surface waters. Vehicular traffic is recognised as a major source of a wide range of pollutants to urban runoff, including conventional pollutants, such as suspended solids and metals, and those referred to as ‘contaminants of emerging concern’. The aim of this study was to investigate the contribution of selected metal(loid)s (Cd, Cr, Cu, Ni, Pb, Pd, Sb, W, Zn), polycyclic aromatic hydrocarbons (PAHs), nonylphenols, octylphenols and –ethoxylates, phthalates and bisphenol A (BPA) from vehicular traffic by sampling urban roadside snow at eight sites, with varying traffic intensities, and one control site without direct impacts of traffic. Our results confirmed that vehicles and traffic-related activities were the sources of octylphenols, BPA and phthalates as well as the metal(loid)s Sb and W, infrequently reported in previous studies. Among metal(loid)s, Cu, Zn and W occurred in the highest concentrations (up to 1.2 mg/L Cu, 2.4 mg/L Zn and 1.9 mg/L W), while PAHs and phthalates occurred in the highest concentrations among the trace organic pollutants (up to 540 μg/L phthalate diisononyl phthalate). Among the phthalates, di-(2-ethylhexyl)phthalate had the highest frequency of detection (43% of the roadside samples). While BPA and octylphenols had relatively high frequencies of detection (50% for BPA and 81% for octylphenols), they were present in comparatively low concentrations (up to 0.2 μg/L BPA and 1.1 μg/L octylphenols). The control site displayed generally low concentrations of the pollutants studied, indicating that atmospheric deposition was not a significant source of the pollutants found in the roadside snow. Several of the pollutants in the roadside snow exceeded the applicable surface water and stormwater effluent guideline values. Thus, the transport of these pollutants with runoff posed risk of causing adverse effects in the receiving surface waters.
Show more [+] Less [-]