Refine search
Results 961-970 of 4,309
Mercury levels of yellowfin tuna (Thunnus albacares) are associated with capture location Full text
2017
Nicklisch, Sascha C.T. | Bonito, Lindsay T. | Sandin, Stuart | Hamdoun, Amro
Mercury is a toxic compound to which humans are exposed by consumption of fish. Current fish consumption advisories focus on minimizing the risk posed by the species that are most likely to have high levels of mercury. Less accounted for is the variation within species, and the potential role of the geographic origin of a fish in determining its mercury level. Here we surveyed the mercury levels in 117 yellowfin tuna caught from 12 different locations worldwide. Our results indicated significant variation in yellowfin tuna methylmercury load, with levels that ranged from 0.03 to 0.82 μg/g wet weight across individual fish. Mean mercury levels were only weakly associated with fish size (R2 < 0.1461) or lipid content (R2 < 0.00007) but varied significantly, by a factor of 8, between sites. The results indicate that the geographic origin of fish can govern mercury load, and argue for better traceability of fish to improve the accuracy of exposure risk predictions.
Show more [+] Less [-]Mercury contamination level and speciation inventory in Lakes Titicaca & Uru-Uru (Bolivia): Current status and future trends Full text
2017
Guédron, S. | Point, D. | Acha, D. | Bouchet, S. | Baya, P.A. | Tessier, E. | Monperrus, M. | Molina, C.I. | Groleau, A. | Chauvaud, L. | Thebault, J. | Amice, E. | Alanoca, L. | Duwig, C. | Uzu, G. | Lazzaro, X. | Bertrand, A. | Bertrand, S. | Barbraud, C. | Delord, K. | Gibon, F.M. | Ibanez, C. | Flores, M. | Fernandez Saavedra, P. | Ezpinoza, M.E. | Heredia, C. | Rocha, F. | Zepita, C. | Amouroux, D.
Mercury contamination level and speciation inventory in Lakes Titicaca & Uru-Uru (Bolivia): Current status and future trends Full text
2017
Guédron, S. | Point, D. | Acha, D. | Bouchet, S. | Baya, P.A. | Tessier, E. | Monperrus, M. | Molina, C.I. | Groleau, A. | Chauvaud, L. | Thebault, J. | Amice, E. | Alanoca, L. | Duwig, C. | Uzu, G. | Lazzaro, X. | Bertrand, A. | Bertrand, S. | Barbraud, C. | Delord, K. | Gibon, F.M. | Ibanez, C. | Flores, M. | Fernandez Saavedra, P. | Ezpinoza, M.E. | Heredia, C. | Rocha, F. | Zepita, C. | Amouroux, D.
Aquatic ecosystems of the Bolivian Altiplano (∼3800 m a.s.l.) are characterized by extreme hydro-climatic constrains (e.g., high UV-radiations and low oxygen) and are under the pressure of increasing anthropogenic activities, unregulated mining, agricultural and urban development. We report here a complete inventory of mercury (Hg) levels and speciation in the water column, atmosphere, sediment and key sentinel organisms (i.e., plankton, fish and birds) of two endorheic Lakes of the same watershed differing with respect to their size, eutrophication and contamination levels. Total Hg (THg) and monomethylmercury (MMHg) concentrations in filtered water and sediment of Lake Titicaca are in the lowest range of reported levels in other large lakes worldwide. Downstream, Hg levels are 3–10 times higher in the shallow eutrophic Lake Uru-Uru than in Lake Titicaca due to high Hg inputs from the surrounding mining region. High percentages of MMHg were found in the filtered and unfiltered water rising up from <1 to ∼50% THg from the oligo/hetero-trophic Lake Titicaca to the eutrophic Lake Uru-Uru. Such high %MMHg is explained by a high in situ MMHg production in relation to the sulfate rich substrate, the low oxygen levels of the water column, and the stabilization of MMHg due to abundant ligands present in these alkaline waters. Differences in MMHg concentrations in water and sediments compartments between Lake Titicaca and Uru-Uru were found to mirror the offset in MMHg levels that also exist in their respective food webs. This suggests that in situ MMHg baseline production is likely the main factor controlling MMHg levels in fish species consumed by the local population. Finally, the increase of anthropogenic pressure in Lake Titicaca may probably enhance eutrophication processes which favor MMHg production and thus accumulation in water and biota.
Show more [+] Less [-]Mercury contamination level and speciation inventory in Lakes Titicaca & Uru-Uru (Bolivia): Current status and future trends Full text
2017
Guédron, Stéphane | Point, David | Acha, Dario | Bouchet, Sylvain | Baya, Pascale, Anabelle | Tessier, Emmanuel | Monperrus, Mathilde | Molina, Carlos I. | Groleau, A. | Chauvaud, Laurent | Thébault, Julien | Amice, Erwan | Alanoca, Lucia | Duwig, Céline | Uzu, Gaëlle | Lazzaro, X. | Arnaud, Bertrand | Bertrand, Sophie | Barbraud, Christophe | Delord, Karine | Gibon, F. M. | Ibanez, C. | Flores, Marizol | Fernandez Saavedra, Pablo | Ezpinoza, M.E. | Heredia, Carlos | Rocha, F. | Zepita, C. | Amouroux, David | Institut des Sciences de la Terre (ISTerre) ; Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]) | Universidad Mayor de San Andrés (UMSA) | Géosciences Environnement Toulouse (GET) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS) | Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM) ; Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire de géochimie des Eaux (LGE) ; Institut de Physique du Globe de Paris (IPG Paris)-Université Paris Cité (UPCité) | Institut de Physique du Globe de Paris (IPGP - UMR_7154) ; Institut national des sciences de l'Univers (INSU - CNRS)-Institut National de l'Information Géographique et Forestière [IGN] (IGN)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) | Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR) ; Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS) | Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR) | Institut des Géosciences de l’Environnement (IGE) ; Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Observatoire des Sciences de l'Univers de Grenoble (Fédération OSUG) | Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) ; Université de Caen Normandie (UNICAEN) ; Normandie Université (NU)-Normandie Université (NU)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA) | MARine Biodiversity Exploitation and Conservation (UMR MARBEC) ; Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS) | Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC) ; Institut National de la Recherche Agronomique (INRA)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS) | Universidad Pública de El Alto (UPEA) | TITICACA project (founded by the Impuestos Directos a los Hidrocarburos IDHadministrated by the Universidad Mayor de San Andres | ANR-13-CESA-0015,LA PACHAMAMA,Lacs de l'Altiplano (Bolivie): exploration in situ des Processus (A)biotiques contrôlant le biogéoCHimie Aquatique du Mercure A l'échelle MoléculAire et isotopique.(2013)
International audience | Aquatic ecosystems of the Bolivian Altiplano (∼3800 m a.s.l.) are characterized by extreme hydro-climatic constrains (e.g., high UV-radiations and low oxygen) and are under the pressure of increasing anthropogenic activities, unregulated mining, agricultural and urban development. We report here a complete inventory of mercury (Hg) levels and speciation in the water column, atmosphere, sediment and key sentinel organisms (i.e., plankton, fish and birds) of two endorheic Lakes of the same watershed differing with respect to their size, eutrophication and contamination levels. Total Hg (THg) and monomethylmercury (MMHg) concentrations in filtered water and sediment of Lake Titicaca are in the lowest range of reported levels in other large lakes worldwide. Downstream, Hg levels are 3-10 times higher in the shallow eutrophic Lake Uru-Uru than in Lake Titicaca due to high Hg inputs from the surrounding mining region. High percentages of MMHg were found in the filtered and unfiltered water rising up from <1 to ∼50% THg from the oligo/hetero-trophic Lake Titicaca to the eutrophic Lake Uru-Uru. Such high %MMHg is explained by a high in situ MMHg production in relation to the sulfate rich substrate, the low oxygen levels of the water column, and the stabilization of MMHg due to abundant ligands present in these alkaline waters. Differences in MMHg concentrations in water and sediments compartments between Lake Titicaca and Uru-Uru were found to mirror the offset in MMHg levels that also exist in their respective food webs. This suggests that in situ MMHg baseline production is likely the main factor controlling MMHg levels in fish species consumed by the local population. Finally, the increase of anthropogenic pressure in Lake Titicaca may probably enhance eutrophication processes which favor MMHg production and thus accumulation in water and biota.
Show more [+] Less [-]Effects of a common insecticide on wetland communities with varying quality of leaf litter inputs Full text
2017
Stoler, A.B. | Mattes, B.M. | Hintz, W.D. | Jones, D.K. | Lind, L. | Schuler, M.S. | Relyea, R.A.
Chemical contamination of aquatic systems often co-occurs with dramatic changes in surrounding terrestrial vegetation. Plant leaf litter serves as a crucial resource input to many freshwater systems, and changes in litter species composition can alter the attributes of freshwater communities. However, little is known how variation in litter inputs interacts with chemical contaminants. We investigated the ecological effects resulting from changes in tree leaf litter inputs to freshwater communities, and how those changes might interact with the timing of insecticide contamination. Using the common insecticide malathion, we hypothesized that inputs of nutrient-rich and labile leaf litter (e.g., elm [Ulmus spp.] or maple [Acer spp.]) would reduce the negative effects of insecticides on wetland communities relative to inputs of recalcitrant litter (e.g., oak [Quercus spp.]). We exposed artificial wetland communities to a factorial combination of three litter species treatments (elm, maple, and oak) and four insecticide treatments (no insecticide, small weekly doses of 10 μg L−1, and either early or late large doses of 50 μg L−1). Communities consisted of microbes, algae, snails, amphipods, zooplankton, and two species of tadpoles. After two months, we found that maple and elm litter generally induced greater primary and secondary production. Insecticides induced a reduction in the abundance of amphipods and some zooplankton species, and increased phytoplankton. In addition, we found interactive effects of litter species and insecticide treatments on amphibian responses, although specific effects depended on application regime. Specifically, with the addition of insecticide, elm and maple litter induced a reduction in gray tree frog survival, oak and elm litter delayed tree frog metamorphosis, and oak and maple litter reduced green frog tadpole mass. Our results suggest that attention to local forest composition, as well as the timing of pesticide application might help ameliorate the harmful effects of pesticides observed in freshwater systems.
Show more [+] Less [-]Multigenerational effects and DNA alterations of QDs-Indolicidin on Daphnia magna Full text
2017
Maselli, Valeria | Siciliano, Antonietta | Giorgio, Antonella | Falanga, Annarita | Galdiero, Stefania | Guida, Marco | Fulgione, Domenico | Galdiero, Emilia
The complex QDs-Indolicidin (QDs-Ind) has been previously shown to be a good antimicrobial system with a low acute toxicity on Daphnia magna (D. magna). However, multigenerational effects caused by exposure to QDs-Ind and after subsequent recovery are still unknown. In this study, we performed multigenerational exposure tests and we evaluated individual fitness, population growth, DNA alteration, expression of Dhb (haemoglobin), Vtg (vitellogenin), CYP4 (cytochrome P450s CYP4 family), and CYP314 (cytochrome P450s mitochondrial family 314) genes on three generation of D. magna. Results showed that the total amount of eggs produced per female and total number of brood per female and body lengths were significantly decreased, Dhb, CYP4 were upregulated while Vtg was down-regulated except at reproduction days when it was slightly up-regulated under QDs-Ind exposure. Random Amplification of Polymorphic DNA (RAPD) method has proven to be useful to qualitative assess of DNA damage during generation and to underline modification in somatic or germinal cells. The results of the study suggest that effects of chronic exposure cannot be ignored.
Show more [+] Less [-]Using nitrogen concentration and isotopic composition in lichens to spatially assess the relative contribution of atmospheric nitrogen sources in complex landscapes Full text
2017
Pinho, P. | Barros, C. | Augusto, S. | Pereira, M.J. | Máguas, C. | Branquinho, C.
Reactive nitrogen (Nr) is an important driver of global change, causing alterations in ecosystem biodiversity and functionality. Environmental assessments require monitoring the emission and deposition of both the amount and types of Nr. This is especially important in heterogeneous landscapes, as different land-cover types emit particular forms of Nr to the atmosphere, which can impact ecosystems distinctively. Such assessments require high spatial resolution maps that also integrate temporal variations, and can only be feasibly achieved by using ecological indicators. Our aim was to rank land-cover types according to the amount and form of emitted atmospheric Nr in a complex landscape with multiple sources of N. To do so, we measured and mapped nitrogen concentration and isotopic composition in lichen thalli, which we then related to land-cover data. Results suggested that, at the landscape scale, intensive agriculture and urban areas were the most important sources of Nr to the atmosphere. Additionally, the ocean greatly influences Nr in land, by providing air with low Nr concentration and a unique isotopic composition. These results have important consequences for managing air pollution at the regional level, as they provide critical information for modeling Nr emission and deposition across regional as well as continental scales.
Show more [+] Less [-]Lead and cadmium exposure, higher thyroid antibodies and thyroid dysfunction in Chinese women Full text
2017
Nie, Xiaomin | Chen, Yi | Chen, Yingchao | Chen, Chi | Han, Bing | Li, Qin | Zhu, Chunfang | Xia, Fangzhen | Zhai, Hualing | Wang, Ningjian | Lu, Yingli
Exposure to lead(Pb) or cadmium(Cd) has been related to decreasing thyroxine in many previous studies. The underlying mechanisms have not been clarified. Heavy metal-induced thyroid autoimmunity in pregnant women has been found, despite having been rarely explored in the general population.We aimed to determine whether the blood levels of lead(BPb) or cadmium(BCd) related to the levels of sera antibodies to thyroid proteins and thyroid dysfunction in the general population.Our study included 5628 Chinese adults and was based on the 2014 SPECT-China study. Thyroid dysfunction and subclinical thyroid dysfunction were defined by total triiodothyronine (TT3), total thyroxine(TT4) and thyroid stimulating hormone (TSH).Thyroid peroxidase antibody (TPOAb), thyroglobulin antibodies (TGAb), TT3, TT4, and TSH were measured by immunochemiluminometric assays. BPb and BCd levels were tested by atomic absorption spectrometry. Linear and logistic regression models were used to analyze the associations.After adjustment for age, body mass index, smoking status (men only) and drinking status, the natural log(ln) BPb was positively related to the lnTPOAb (B = 0.062, P < 0.05) and to the lnTSH (B = 0.047, P < 0.01) in women. The lnBCd in women was positively related to the lnTGAb (B = 0.046, P < 0.05). In the adjusted logistic regression models, the BCd of women was positively related to their hypothyroid status and TGAb tertiles. The ORs of women in the middle and higher TPOAb tertiles were 1.38 (P < 0.001) and 1.35 (P < 0.001) times greater for every ln-unit increase in BPb, respectively. In men, no continuous correlation was found among variables.In women, BPb and BCd levels were related to higher TSH and hypothyroid status, respectively, suggesting a Pb and Cd induction of sex-biased thyroid autoimmunity.
Show more [+] Less [-]Histopathological and proteomic responses in male Chinese rare minnow (Gobiocypris rarus) indicate hepatotoxicity following benzotriazole exposure Full text
2017
Liang, Xue-fang | Zha, Jinmiao | Martyniuk, Christopher J. | Wang, Zijian | Zhao, Ji
Benzotriazole (BT) and its associated derivatives are used ubiquitously in industrial processes, and can be detected in indoor temperature coolants and in chemicals designed to inhibit corrosion. This chemical has been widely detected in aquatic environments and shows some degree of environmental persistence. Evidence has shown that BT exposure can negatively affect endocrine systems and can result in neurotoxicity in fish. However, no study has examined whether this chemical exhibits hepatotoxicity in fish, and if so, what are the underlying mechanism associated with the damage. To address this knowledge gap, we measured the liver proteome of adult male Chinese rare minnow (Gobiocypris rarus) exposed to either 0.05, 0.5, or 5 mg/L BT for 28 days. Overall, 17 proteins were induced and 9 were reduced in abundance following BT treatment (ratio > 1.5, p < 0.05). Pathway analysis revealed that cellular processes affected by BT included xenobiotic clearance, oxidative stress response, apoptosis, and translation. Moreover, transcripts related to these toxic pathways were also significantly affected by BT. In addition, rare minnows exposed to BT showed signs of hypertrophy of hepatocytes, nuclei pyknosis, and higher levels of cellular vacuolization compared to the controls, thus these early proteomic responses in the liver may be related to pathology (i.e. adverse outcome pathway). Our data demonstrate that BT dysregulates molecular responses in the liver and tissue pathology indicative of damage. This study provides new insight into BT hepatotoxicity in Chinese rare minnow.
Show more [+] Less [-]Polycyclic aromatic hydrocarbons in ocean sediments from the North Pacific to the Arctic Ocean Full text
2017
Ma, Yuxin | Halsall, Crispin J. | Xie, Zhiyong | Koetke, Danijela | Mi, Wenying | Ebinghaus, Ralf | Gao, Guoping
Eighteen polycyclic aromatic hydrocarbons (PAHs) were measured in surficial sediments along a marine transect from the North Pacific into the Arctic Ocean. The highest average Σ18PAHs concentrations were observed along the continental slope of the Canada Basin in the Arctic (68.3 ± 8.5 ng g−1 dw), followed by sediments in the Chukchi Sea shelf (49.7 ± 21.2 ng g−1 dw) and Bering Sea (39.5 ± 11.3 ng g−1 dw), while the Bering Strait (16.8 ± 7.1 ng g−1 dw) and Central Arctic Ocean sediments (13.1 ± 9.6 ng g−1 dw) had relatively lower average concentrations. The use of principal components analysis with multiple linear regression (PCA/MLR) indicated that on average oil related or petrogenic sources contributed ∼42% of the measured PAHs in the sediments and marked by higher concentrations of two methylnaphthalenes over the non-alkylated parent PAH, naphthalene. Wood and coal combustion contributed ∼32%, and high temperature pyrogenic sources contributing ∼26%. Petrogenic sources, such as oil seeps, allochthonous coal and coastally eroded material such as terrigenous sediments particularly affected the Chukchi Sea shelf and slope of the Canada Basin, while biomass and coal combustion sources appeared to have greater influence in the central Arctic Ocean, possibly due to the effects of episodic summertime forest fires.
Show more [+] Less [-]Molecular toxicity of triclosan and carbamazepine to green algae Chlorococcum sp.: A single cell view using synchrotron-based fourier transform infrared spectromicroscopy Full text
2017
Xin, Xiaying | Huang, Guohe | Liu, Xia | An, Chunjiang | Yao, Yao | Weger, Harold | Zhang, Peng | Chen, Xiujuan
Although pharmaceuticals and personal care products have been used and introduced into the environment in large quantities, little information on potential ecological risks is currently available considering their effects on living organisms. We verified the feasibility of using synchrotron-based mid-infrared (SR-FTIR) spectromicroscopy to explore in vivo toxic effects on single living Chlorococcum sp. cells. The study provided important information to achieve a better understanding of the toxic mechanism of triclosan and carbamazepine on living algae Chlorococcum sp. Triclosan and carbamazepine had distinctive toxic effects on unicellular living algae. Most strikingly, triclosan had more dramatic toxic effects on biochemical components than carbamazepine. Triclosan can affect algae primarily by inhibiting fatty acid synthesis and causing protein aggregation. The toxicity response was irreversible at higher concentrations (100.000 μM), but attenuated at lower concentrations (0.391 μM) as time passes. Carbamazepine can produce hydrophobic interactions to affect the phospholipid bilayer and work on specific proteins to disfunction the cell membrane. Carbamazepine-exposed cells developed a resistance while extending exposure time. This is the first demonstration from an ecological standpoint that SR-FTIR can provide an innovative approach to reveal the toxicity of emerging pollutants in aquatic environments.
Show more [+] Less [-]Hormesis commonly observed in the assessment of aneuploidy in yeast Full text
2017
Calabrese, Edward J.
Extensive dose response studies have assessed the potential of toxic chemical agents to induce aneuploidy in the yeast model. An assessment of such findings revealed that hormetic-like biphasic dose responses were commonly observed. A preliminary estimate of the frequency of the hormetic responses using a priori entry and evaluative criteria was approximately 65–80%. These findings suggest the possibility of hormetic effects being extended to genotoxic endpoints.
Show more [+] Less [-]