Refine search
Results 961-970 of 7,921
Mitigation potential of black carbon emissions from on-road vehicles in China
2021
Zhang, Shaojun | Wu, Xiaomeng | Zheng, Xuan | Wen, Yifan | Wu, Ye
Black carbon (BC) is the most potent light-absorbing component of particulate matter and can have a significant warming impact. On-road vehicles are a major source of BC and a significant contributor to global warming. This paper establishes an updated inventory to quantify the mitigation potential of efforts to control BC emissions from on-road transportation in China. The total emissions of BC from on-road vehicles in China were 152.1 thousand tons in 2017. Heavy-duty diesel fleets accounted for a large percentage of emissions, whereas light-duty gasoline fleets presented a gradually increasing trend of emissions. Historically, comprehensive control policies for on-road vehicle emissions have achieved substantial BC reductions, with a 45% decrease in 2017 compared to 2000. With the implementation of stringent control policies and the development of advanced control technologies, BC emissions from the on-road sector may have a greater reduction potential in the future. By 2035, three various future scenarios representing different stringency levels of emission controls will reduce BC emissions by 58%, 90%, and 93% relative to 2017. The major benefits in reducing BC emissions result from more stringent emission standards and the accelerated retirement of older heavy-duty diesel vehicles. The shorter lifetime of BC than that of CO₂ implies that the mitigation of BC emissions would offer an important opportunity to contribute to alleviating global warming in the short term. Our assessment reveals that in 2035, the most stringent scenario, Scenario PC3, could deliver a CO₂-equivalent emission reduction on a 20-year scale of 234.2 (GWP₂₀₋yᵣ) million tons compared with the NAP Scenario, which is equivalent to reducing the oil consumption in China’s transportation sector by nearly 20% from a climate impact perspective.
Show more [+] Less [-]Ambient particulate matter triggers defective autophagy and hijacks endothelial cell renewal through oxidative stress-independent lysosomal impairment
2021
Wang, Yan | Ma, Ying | Yao, Yongshuai | Liu, Qing | Pang, Yanting | Tang, Meng
Ambient particulate matter (APM) has been authenticated to exert hazards on human vascular endothelial cells, including abnormal autophagy. However, the potential reasons for autophagosome accumulation are still obscure. Since autophagy is a dynamic process, it is imperative to systemically consider the autophagic induction combined with its degradation to reflect realistic scenarios. Therefore, in the current study, different exposure durations were initially employed for the detection of autophagic marker proteins to assess the dynamic autophagic state preliminarily. Additionally, LC3 turn-over and autophagic flux assays were used to determine the specific cause of LC3II upregulation in EA.hy926 human vascular endothelial cells by a type of standard urban particulate matter, PM SRM1648a. As a result, PM SRM1648a stimulates excess autophagic vacuoles in EA. hy926 cells, in which the underlying causes are probably different at varying incubation endpoints. Intriguingly, LC3II upregulation was due to the intensifying autophagic initiation after 6 h of exposure, whereas as exposure period was extended to 24 h, overloaded autophagic vacuoles were attributed to the defective autophagy. Mechanistically, PM SRM1648a damages EA. hy926 cells by inducing lysosomal disequilibrium and resultant autophagic malfunction which are not directly mediated by oxidative stress. These data indicate that appropriate maintenance of lysosomal function and autophagic flux is probably a protective measure against APM-induced endothelial cell damage.
Show more [+] Less [-]Dynamic exchange between particulate and dissolved matter following sequential resuspension of particles from an urban watershed under photo-irradiation
2021
Lee, Han-Saem | Hur, Jin | Shin, Hyun-Sang
Particulate matter (PM) has long-term effects on water quality compared to dissolved matter (DM) during downstream transfer after inflows into an aquatic environment. In the present study, the characteristics, behavior, and effects of PM from an urban watershed under photo-irradiation were investigated through sequential resuspensions before being compared. Changes in the organic matter content, heavy metals (Mn, Fe, Zn, Pb), spectroscopic indices (SUVA₂₅₄, slope ratio (SR), humidification index (HIX), fluorescence index (FI), and biological index (BIX)), excitation-emission matrix combined with parallel factor analysis components (EEM-PARAFAC), and disinfection by-product formation potential (DBPFP) were analyzed. According to our results, light enhanced the release of organic matter from PM but reduced dissolved heavy metals. The PMU affected by urban-derived pollutants (i.e., rainfall particles, road-deposited sediment, sewer-pipeline-deposited sediment) exhibited higher quantities of terrestrial humic-like organic matter than PMR, which contains base particles from riverines (i.e., soil, sediments). For the PMU, the humic-like fluorescent components (C1 and C2) enhanced under light conditions with every resuspension, whereas the components decreased in the PMR. Consistent with the PARAFAC results, the trihalomethane formation potential (THMFP) of the PMU was enhanced by approximately 2.8 times more than that of the PMR, and exhibited a high correlation with the fluorescent components (C1, r = 0.81, p < 0.001). The principal component analysis results also confirmed that the characteristics of dynamic exchanges between PM and DM were distinguished by PM sources and light, and the photo-released DM and their spectral characteristics displayed opposite behaviors depending on the PM sources during the sequential resuspensions.
Show more [+] Less [-]Improved Raman spectroscopy-based approach to assess microplastics in seafood
2021
Leung, Matthew Ming-Lok | Ho, Yuen-Wa | Lee, Cheng-Hao | Wang, Youji | Hu, Menghong | Kwok, Kevin Wing Hin | Chua, Song-Lin | Fang, James Kar-Hei
Microplastics represent an emerging environmental issue and have been found almost everywhere including seafood, raising a great concern about the ecological and human health risks they pose. This study addressed the common technical challenges in the assessment of microplastics in seafood by developing an improved protocol based on Raman spectroscopy and using the green-lipped mussel Perna viridis and the Japanese jack mackerel Trachurus japonicus as the test models. Our findings identified a type of stainless-steel filter membranes with minimal Raman interference, and a combination of chemicals that achieved 99–100% digestion efficiency for both organic and inorganic biomass. This combined chemical treatment reached 90–100% recovery rates for seven types of microplastics, on which the surface modification was considered negligible and did not affect the accuracy of polymer identification based on Raman spectra, which showed 94–99% similarity to corresponding untreated microplastics. The developed extraction method for microplastics was further combined with an automated Raman mapping approach, from which our results confirmed the presence of microplastics in P. viridis and T. japonicus collected from Hong Kong waters. Identified microplastics included polypropylene, polyethylene, polystyrene and poly(ethylene terephthalate), mainly in the form of fragments and fibres. Our protocol is applicable to other biological samples, and provides an improved alternative to streamline the workflow of microplastic analysis for routine monitoring purposes.
Show more [+] Less [-]Emergence of colistin resistance genes (mcr-1) in Escherichia coli among widely distributed wild ungulates
2021
Torres, Rita Tinoco | Cunha, Monica V. | Araujo, Débora | Ferreira, Helena | Fonseca, Carlos | Palmeira, Josman Dantas
The environment is considered a major reservoir of antimicrobial resistant microorganisms (AMR) and antimicrobial resistance genes (ARG). Colistin, a “last resort” antibiotic, is used for the treatment of severe infections caused by multidrug-resistant Gram-negative bacteria. The global dissemination of mobile colistin resistance genes (mcr) in natural and non-natural environments is a major setback in the fight against antimicrobial resistance. Hitherto, there is a limited number of studies screening this resistance determinant in bacteria from wildlife. In this study, we describe for the first time the detection of plasmid-mediated colistin resistance in Escherichia coli from wild ungulates in Portugal, which are also widely distributed across Europe. This information is critical to identify the importance of ungulates in the dissemination of resistant bacteria, and their corresponding genes, across the environment. Here, 151 resistant-Enterobacteriaceae isolated from 181 samples collected from different wild ungulate species throughout Portugal were screened for mcr genes. Four mcr-1-positive Escherichia coli were detected from four fallow deer individuals that were sampled in the same hunting ground. These four isolates harboured mcr-1-related IncP plasmids belonging to sequencing types ST155, ST533 and ST345 (n = 2), suggesting bacterial and/or plasmid circulation. All mcr-1-positive E. coli also showed other resistance phenotypes, including MDR, including the B1 commensal phylogenetic profile. All mcr-1-positive E. coli show additional resistance phenotypes, including MDR, including the B1 commensal phylogenetic profile. Our findings are upsetting, highlighting the global dissemination of colistin resistance genes in the whole ecosystem, which, under the One Health framework, emphasizes the urgent need for effective implementation of AMR surveillance and control in the human-animal-environment interfaces.
Show more [+] Less [-]A comparison of light-duty vehicles' high emitters fractions obtained from an emission remote sensing campaign and emission inspection program for policy recommendation
2021
Hassani, Amin | Safavi, Seyed Reza | Hosseini, Vahid
Urban transportation is one of the leading causes of air pollution in big cities. In-use emissions of vehicles are higher than the emission control certification levels. The current study uses a roadside remote sensing emission monitoring campaign to investigate (a) fraction of high emitters in the light-duty vehicle (LDV) fleet and their contributions to the total emissions, (b) emission inspection (I/M) programs' effectiveness, and (c) alternate fuel (natural gas) encouragement policy. LDVs consist of passenger or freight transport vehicles with four wheels equivalent to classes M1 and N1 of European union vehicle classifications. The motivation is to assess the current emission inspection program's success rate and study the impact of the increased natural gas vehicle market share policy. It is also meant to present and validate remote sensing as a possible backup method to the current I/M program.The emission remote sensing campaign was conducted to measure emissions of CO, HC, and NO of the LDV fleet. Fleet age, engine size, and fuel type (gasoline or natural gas) were extracted and correlated with emissions. It was found that CO and HC emissions are five times higher for cars more than fifteen years old of age compared to those less than five years old. Analyses of high-emitters showed that almost 20% of the fleet were high-emitters and responsible for roughly half of CO, HC, and NO emissions.The correlation between the I/M program and the remote sensing to identify high-emitters was weak. Which indicates the need for an improved I/M program. It shows that even a limited remote sensing campaign is beneficial as a complementary monitoring tool to the I/M program. The study showed the same fraction of high-emitters in natural gas (methane) vehicles, despite the national policies to increase natural gas vehicle fraction in the market for reduced emissions.
Show more [+] Less [-]Integration of environmental metabolomics and physiological approach for evaluation of saline pollution to rice plant
2021
Ma, Nyuk Ling | Lam, Su Datt | Che Lah, Wan Afifudeen | Aḥmad, ʻAzīz | Rinklebe, Jörg | Sonne, Christian | Peng, Wanxi
Salinisation of soil is associated with urban pollution, industrial development and rising sea level. Understanding how high salinity is managed at the plant cellular level is vital to increase sustainable farming output. Previous studies focus on plant stress responses under salinity tolerance. Yet, there is limited knowledge about the mechanisms involved from stress state until the recovery state; our research aims to close this gap. By using the most tolerance genotype (SS1-14) and the most susceptible genotype (SS2-18), comparative physiological, metabolome and post-harvest assessments were performed to identify the underlying mechanisms for salinity stress recovery in plant cells. The up-regulation of glutamine, asparagine and malonic acid were found in recovered-tolerant genotype, suggesting a role in the regulation of panicle branching and spikelet formation for survival. Rice could survive up to 150 mM NaCl (∼15 ds/m) with declined of production rate 5–20% ranged from tolerance to susceptible genotype. This show that rice farming may still be viable on the high saline affected area with the right selection of salt-tolerant species, including glycophytes. The salt recovery biomarkers identified in this study and the adaption underlined could be empowered to address salinity problem in rice field.
Show more [+] Less [-]A review on degradation of perfluorinated compounds based on ultraviolet advanced oxidation
2021
Wang, Xuelin | Chen, Zhongyun | Wang, Yonglei | Sun, Wenjun
Perfluorinated compounds (PFCs), as emerging persistent pollutants, can exist for a long time in the environment due to their high stability. PFCs have been detected in drinking water, wastewater, and the human body. Studies have shown that PFCs pose a threat to human health and the ecological environment, which is expected to be listed in new drinking water regulations. Traditional processes, including coagulation, biological filtration, chlorination, ozonolysis, and ultraviolet light have ineffective removal efficiency on PFCs; however, advanced oxidation processes (AOP) based on ultraviolet (UV) light have good application prospects for the removal of PFCs. This study provides an overview of the removal of PFCs by UV-based AOPs; systematically introduces the research status of various UV-based AOPs from the perspectives of degradation pathways, degradation efficiency, influencing factors, formation of by-products; and comprehensively compares these different UV-based AOPs. Finally, the limitations of existing research and future research needs are discussed. This review aims to provide an overview for a better understanding of the degradation status and prospects of UV-based AOPs for the degradation of PFCs.
Show more [+] Less [-]Uncertainty of nitrogen budget in China
2021
Zhang, Xiuming | Ren, Chenchen | Gu, Baojing | Chen, Deli
The accuracy of the nitrogen (N) budget is of great importance for evidence-based decision-making to address both food security and environmental protection challenges. This study attempts to advance understanding of uncertainties in China's N budget using the Coupled Human And Natural Systems (CHANS) model and Monte Carlo simulation from 1980 to 2018. Results show that the spatial and temporal variations in agricultural and industrial activities and insufficient knowledge on N cycling parameterization are the two dominant causes of uncertainties in the N budget in China. Uncertainties of N inputs generally are <10%, while they are <30% for N outputs and >30% for N accumulations. Uncertainty of nitrogen oxides emission is more sensitive to energy consumption due to the large contributions from industry and transportation. While the uncertainty of ammonia emission is predominantly affected by agricultural activity. Combining surface measurements, satellite observations, and atmospheric simulation models enables cross-check of N fluxes in multiple systems and reduces uncertainties of N budget.
Show more [+] Less [-]Diffuse CO2 emissions from Sete Cidades volcanic lake (São Miguel Island, Azores): Influence of eutrophication processes
2021
Andrade, César | Cruz, J Virgílio | Viveiros, Fátima | Coutinho, Rui
Sete Cidades Lake (São Miguel Island, Portugal) is subdivided into two interconnected branches: the Green Lake and Blue Lake. The lake has an area and maximum depth of 4.39 km² and 29.5 m (Blue Lake), respectively, with evidence of eutrophication, particularly in the northern area of the Green Lake. In this study, we conducted a sampling survey during January 2017 to measure CO₂ fluxes from the lake using a floating accumulation chamber. We also produced two hydrogeochemical profiles for each of the lake’s branches. A total of 1760 CO₂ flux measurements were taken along the lake’s surface. The lake water was relatively cold (14.0 °C on average) and weakly mineralised (average electrical conductivity of 116 μS cm⁻¹) with a neutral pH (7.7 on average). The relative composition of major ions occurred in the following decreasing order: Na⁺ > Mg²⁺ > Ca²⁺ > K⁺ for cations and Cl⁻ > HCO₃⁻ > SO₄²⁻ for anions. The lake water was mainly the Na–Cl type due to sea salt input from seawater spraying. CO₂ fluxes ranged from 0.3 to 17.2 g m⁻² d⁻¹ and from 2.1 to 17.9 g m⁻² d⁻¹ for the Blue and Green Lakes, respectively. Highest CO₂ degassing occurred in areas dominated by macrophytes and algal blooms. The measured values suggest that the CO₂ was predominantly biogenically sourced, which was further supported by the δ¹³C isotopic data. The estimated total CO₂ emissions varied between 5.8 t d⁻¹ (Green Lake; area = 0.81 km²) and 24.9 t d⁻¹ (Blue Lake; area = 3.58 km²). This study further elucidates the lake’s trophic and chemical pollution status and has major implications for lacustrine CO₂ emissions to the atmosphere. Our study also provides a reference for understanding potential future variations in volcanic activity.
Show more [+] Less [-]