Refine search
Results 971-980 of 4,929
Validation and application of a modified QuEChERS method for extracting neonicotinoid residues from New Zealand maize field soil reveals their persistence at nominally hazardous concentrations
2019
Pook, Chris | Gritcan, Iana
The widespread use of neonicotinoid insecticides is controversial due to their persistence in the environment and concerns the long-term consequences of their use. We present a simple, low-cost method for the sensitive and efficient extraction of three important neonicotinoids from soil with a detection limit <1 ng g−1 wet soil. We have validated this method by applying it to uncontaminated soil samples spiked with thiamethoxam, clothianidin and imidacloprid at environmentally concentrations. Absolute recoveries were >80% for thiamethoxam, clothianidin and imidacloprid. We also applied the method to soil samples collected from maize fields in New Zealand's North Island and found imidacloprid in 43 out of 45 samples and clothianidin in every one. Mean imidacloprid concentrations varied from 0.5 to 9.4 ng g−1 (wet weight) and clothianidin from 2.1 to 26.7 ng g−1 (wet weight). Imidacloprid concentrations exceed the New Zealand Environmental Protection Agency's Environmental Exposure Limit of 1 ng g−1 (dry weight) at eight of the nine sites sampled. These results are also remarkable because we have detected multiple neonicotinoid residues at every site. Imidacloprid residues appear to persist at significant concentrations at five of our sites from an application at least two years previous. This is only the third study to report the presence of neonicotinoid residues in NZ's environment and the first to show that those residues are persistent in the environment at nominally hazardous concentrations.
Show more [+] Less [-]The cation competition and electrostatic theory are equally valid in quantifying the toxicity of trivalent rare earth ions (Y3+ and Ce3+) to Triticum aestivum
2019
Gong, Bing | He, Erkai | Qiu, Hao | Li, Jianqiu | Ji, Jie | Peijnenburg, Willie J.G.M. | Liu, Yang | Zhao, Ling | Cao, Xinde
There is a lack of appropriate models to delineate the toxicity of rare earth elements (REEs) while taking into account the factors that affect bioavailability. Here, standardized wheat (Triticum aestivum L.) root elongation tests were conducted to examine the impact of exposure conditions (i.e., varying Ca, Mg, Na, K and pH levels) on Y and Ce toxicity. Cation competition and electrostatic theory were examined for their applicability in explaining the observed variations in toxicity. Only Ca2+ and Mg2+ significantly alleviated the toxicity of Y3+ and Ce3+, while Na+, K+ and H+ showed no significant effects. Based on the cation competition, the derived binding constants for the hypothetical biotic ligands of wheat logKCaBL, logKMgBL, logKYBL, and logKCeBL were 3.87, 3.59, 6.70, and 6.48, respectively. The biotic ligand model (BLM) succeeded in predicting toxicities of Y and Ce, with more than 93% of the variance in toxicity explained. Given the BLM requires large data sets for deriving model parameters, attempts were further made to explore a simpler electrostatic based model to quantify REEs toxicity. The results demonstrated that the predictive capacity of the electrostatic approach, which considers ion activities at the plasma membrane surface, was comparable to that of BLM with at least 87% of the variations in toxicity explained. This suggested that the electrostatic theory can serve as a surrogate to BLM in modeling Y and Ce toxicities. Therefore, we recommend the BLM and electrostatic-based model as effective approaches to incorporate bioavailability in quantifying REEs toxicity in the presence of various levels of other major cations.
Show more [+] Less [-]Short and long-term effects of bisphenol S (BPS) exposure during pregnancy and lactation on plasma lipids, hormones, and behavior in rats
2019
da Silva, Beatriz Souza | Pietrobon, Carla Bruna | Bertasso, Iala Milene | Lopes, Bruna Pereira | Carvalho, Janaine Cavalcanti | Peixoto-Silva, Nayara | Santos, Tatianne Rosa | Claudio-Neto, Sylvio | Manhães, Alex Christian | Oliveira, Elaine | de Moura, Egberto Gaspar | Lisboa, Patrícia Cristina
Bisphenol S (BPS) has replaced bisphenol A (BPA), a known non-persistent endocrine disrupting chemical, in several products. Considering that little is known regarding BPS effects, especially during critical windows of ontogenetic development, and that BPA, which is quite similar to BPS, is know to be transferred to the offspring via the placenta and milk, in the present study we investigated the behavioral, biochemical and endocrine profiles of Wistar rats born from dams that were BPS-exposed [groups: BPS10 (10 μg/kg/day), BPS50 (50 μg/kg/day)] during pregnancy and lactation. Due to the non-monotonic dose-response effect of bisphenol, the data of both BPS groups were directly compared with those of the controls, not to each other. Males and females were analyzed separately. At weaning, male BPS50 offspring had hypotriglyceridemia and hyperthyroxinemia, whereas BPS50 females showed higher 25(OH)D levels. At adulthood, BPS offspring of both sexes had lower food intake. BPS males showed lower visceral adiposity. BPS50 females had smaller fat droplets in brown adipocytes. BPS males showed higher anxiety and higher locomotor activity, while BPS10 females showed lower exploration. During a food challenge test at adulthood, BPS males consumed more high-fat diet at 30 min. BPS10 females initially (at 30 min) consumed more high-fat diet but, after 12 h, less of this diet was consumed. BPS50 males had hypertriglyceridemia and lower plasma T3, while BPS females showed lower plasma T4. BPS10 females had lower progesterone, whereas BPS50 females had higher plasma 25(OH)D. Maternal BPS exposure has adverse effects on the triacylglycerol, hormones levels and behavior of the progeny. Furthermore, the increased preference for the fat-enriched diet suggests an increased risk for obesity and its health consequences in the long term.
Show more [+] Less [-]Bioaccumulation of microcystins in seston, zooplankton and fish: A case study in Lake Zumpango, Mexico
2019
Zamora-Barrios, Cesar Alejandro | Nandini, S. | Sarma, S.S.S.
Cyanotoxins from toxic blooms in lakes or eutrophic reservoirs are harmful to several organisms including zooplankton, which often act as vectors of these secondary metabolites, because they consume cyanobacteria, bioaccumulate the cyanotoxins and pass them on along the food chain. Microcystins are among the most commonly found cyanotoxins and often cause zooplankton mortality. Although cyanobacterial blooms are common and persistent in Mexican water bodies, information on the bioaccumulation of cyanotoxins is scarce. In this study we present data on the bioaccumulation of cyanotoxins from Planktothrix agardhii, Microcystis sp., Cylindrospermopsis raciborskii and Dolichospermum planctonicum blooms in the seston (suspended particulate matter more than 1.2 μm) by zooplankton and fish (tilapia (Oreochromis niloticus) and mesa silverside (Chirostoma jordani) samples from Lake Zumpango (Mexico City). The cyanotoxins were extracted from the seston, zooplankton and fish tissue by disintegration using mechanical homogenization and 75% methanol. After extraction, microcystins were measured using an ELISA kit (Envirologix). Concentration of microcystins expressed as equivalents, reached a maximum value of 117 μg g−1 on sestonic samples; in zooplankton they were in the range of 0.0070–0.29 μg g−1. The dominant zooplankton taxa included Acanthocyclops americanus copepodites, Daphnia laevis and Bosmina longirostris. Our results indicate twice the permissible limits of microcystins (0.04 μg kg−1 d−1) for consumption of cyanobacterial products in whole fish tissue of Chirostoma jordani. The data have been discussed with emphasis on the importance of regular monitoring of water bodies in Mexico to test the ecotoxicological impacts of cyanobacterial blooms and the risk that consumption of products with microcystins could promote.
Show more [+] Less [-]Assessment of hexachlorcyclohexane biodegradation in contaminated soil by compound-specific stable isotope analysis
2019
Qian, Yiguang | Chen, Ke | Liu, Yaqing | Li, Juying
Compound-specific isotope analysis (CSIA) was firstly applied to explore the biodegradation of hexachlorcyclohexane (HCH) isomers in contaminated soil. Concentrations and compound-specific carbon isotope ratio profiles of HCH in different specific ex-situ pilot-scale contaminated soil mesocosms were determined. The addition of nutrients and Sphingobium spp. significantly enhanced the degradation of HCH in contaminated soils within 90 days. Isomer specific biodegradation of HCHs was observed with α- and γ-HCH being more degradable than β and δ-HCH. Stable carbon isotope fractionation of HCH was observed and the δ¹³C values shifted from −28.8 ± 0.3‰ to −24.8 ± 0.7‰ upon 87.3% removal, −27.9 ± 0.2‰ to −25.9 ± 0.5‰ upon 72.8% removal, −29.4 ± 0.3‰ to −19.9 ± 0.6‰ upon 95.8% removal, and −27.8 ± 0.5‰ to −23.6 ± 0.7‰ after 96.9% removal for α, β, γ, and δ-HCH, respectively. Furthermore, the enrichment factor ε for α, β, γ, and δ-HCH biodegradation in soil was obtained for the first time as −2.0‰, −1.5‰, −3.2‰, and −1.4‰, which could play a critical role in assessing in situ biodegradation of HCH isomers in field site soil. Results from ex-situ pilot-scale experiments clearly demonstrated that CSIA could be a promising tool to qualitatively and quantitatively evaluate in situ biodegradation of HCH in contaminated field site.
Show more [+] Less [-]Benzotriazole decorated graphene oxide for efficient removal of U(VI)
2019
Ding, Jie | Yan, Zijun | Feng, Lanqi | Zhai, Fuwan | Chen, Xiao | Xu, Yuwei | Tang, Siqun | Huang, Chao | Li, Laicai | Pan, N. (Ning) | He, Yi | Jin, Yongdong | Xia, Chuanqin
There is a need to develop highly efficient materials for capturing uranium from nuclear wastewater. Here, 5-methylbenzotriazole modified graphene oxide (MBTA-GO) was used to adsorb U(VI) from aqueous solution. By the trials of different conditions, we found that the removal of U(VI) from acidic solution was strongly dependent on pH but independent of ionic strength. The U(VI) adsorption was perfectly conformed to the pseudo-second-order kinetics and the adsorption isotherms were simulated by the Langmuir model well. A high removal capacity (qₘₐₓ = 264 mg/g) for U(VI) at pH 3.5 was obtained. XPS, EXAFS analyses and DFT calculations revealed that the mechanism of uranium capture was ascribed to (i) the surface complexation by benzotriazole and carboxyl groups (providing lone pair electrons) on MBTA-GO and (ii) enhanced synergistic coordination ability of delocalized π-bond of triazole group toward U due to the transfer of electrons from graphene sheet to benzotriazole. DFT calculations further demonstrated that benzotriazole displayed stronger binding with U(VI) compared to carboxyl group due to higher binding energy of [Side/Surface-U-MBTA-GO] (79.745, 54.986 kcal/mol) than [MBTA-GO–COOH–U] (27.131 kcal/mol). This work will provide valuable insight into designing novel nitrogen-containing adsorbents for practical application in wastewater treatment.
Show more [+] Less [-]Nonstereoselective foliar absorption and translocation of cycloxaprid, a novel chiral neonicotinoid, in Chinese cabbage
2019
Cheng, Xi | Wang, Yichen | Li, Wei | Li, Qinkan | Luo, Peiwen | Ye, Qingfu
Exploring traditional neonicotinoid pesticides substitutes has become one of the global scientific attentions because of their hazardous environmental impacts. Cycloxaprid (CYC) is considered to be a promising candidate alternative. But the environmental behaviors and fate of CYC in different planting system remain poorly understood. The accumulation of 14C-labeled CYC stereoisomers within different parts of Chinese cabbage (Brassica chinensis L.) was investigated, with a particular focus on the foliar absorption, translocation and stereoselectivity of CYC, during a laboratory trial. In general, the stereoisomers 14C-5R,8S-CYC and 14C-5S,8R-CYC, their metabolites, as well as the breakdown and reaction products can be transferred in both acropetal and basipetal directions. Most of the two stereoisomers absorbed by plants remained in the treated leaves, whereas a small amount was distributed to the roots. The amount of 14C in the stalks varied among the experimental time points. At 192 h after treatment (HAT), the detected radioactivity of both 14C-5R,8S-CYC and 14C-5S,8R-CYC in the leaves above the treated leaf (LATL) was higher than that in the leaves below the treated leaf (LBTL). However, the stereoisomers of CYC underwent nonstereoselective absorption and translocation in this trial. This information implies that racemic CYC and its metabolites should be a main research focus. Thus, the obtained results provide implications for a more accurate prediction about the risk assessment of CYC, which will be helpful for guiding its rational use as well as securing the ecological environment safety and human health.
Show more [+] Less [-]Taxifolin ameliorates DEHP-induced cardiomyocyte hypertrophy via attenuating mitochondrial dysfunction and glycometabolism disorder in chicken
2019
Cai, Jingzeng | Shi, Guangliang | Zhang, Yuan | Zheng, Yingying | Yang, Jie | Liu, Qi | Gong, Yafan | Yu, Dahai | Zhang, Ziwei
Di-(2-ethylhexyl) phthalate (DEHP) is a prevalent environmental contaminant that severely impacts the health of human and animals. Taxifolin (TAX), a plant flavonoid isolated from yew, exerts protective effects on cardiac diseases. Nevertheless, whether DEHP could induce cardiomyocyte hypertrophy and its mechanism remains unclear. This study aimed to highlight the specific molecular mechanisms of DEHP-induced cardiomyocyte hypertrophy and the protective potential of TAX against it. Chicken primary cardiomyocytes were treated with DEHP (500 μM) and/or TAX (0.5 μM) for 24 h. The levels of glucose and adenosine triphosphate (ATP) were detected, and cardiac hypertrophy-related genes were validated by real-time quantitative PCR (qRT-PCR) and Western blot (WB) in vitro. The results showed that DEHP-induced cardiac hypertrophy was ameliorated by TAX, as indicated by the increased cardiomyocyte area and expression of atrial natriuretic peptide (ANP), natriuretic peptides A-like (BNP) and β-myosin heavy cardiac muscle (β-MHC). Furthermore, DEHP induced cardiac hypertrophy via the interleukin 6 (IL-6)/Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathway in vitro. In addition, DEHP disrupted mitochondrial function and glycometabolism by activating the insulin-like growth factor 1 (IGF1)/phosphatidylinositol 3-kinase (PI3K) pathway and the peroxisome proliferator activated receptors (PPARs)/PPARG coactivator 1 alpha (PGC-1α) pathway to induce cardiac hypertrophy in vitro. Intriguingly, those DEHP-induced changes were obviously alleviated by TAX treatment. Taken together, cardiac hypertrophy was induced by DEHP via activating the IL-6/JAK/STAT3 signaling pathway, triggering glycometabolism disorder and mitochondrial dysfunction in vitro, can be ameliorated by TAX. Our findings may provide a feasible molecular mechanism for the treatment of cardiomyocyte hypertrophy induced by DEHP.
Show more [+] Less [-]Accumulation and spatial distribution of copper and nutrients in willow as affected by soil flooding: A synchrotron-based X-ray fluorescence study
2019
Cao, Yini | Ma, Chuanxin | Zhang, Jianfeng | Wang, Shufeng | White, Jason C. | Chen, Guangcai | Xing, Baoshan
Copper (Cu) induced phytotoxicity has become a serious environmental problem as a consequence of significant metal release through anthropogenic activity. Understanding the spatial distribution of Cu in plants such as willow is essential to elucidate the mechanisms of metal accumulation and transport in woody plants, particularly as affected by variable environment conditions such as soil flooding. Using synchrotron-based X-ray fluorescence (μ-XRF) techniques, the spatial distribution of Cu and other nutrient elements were investigated in roots and stems of Salix (S.) integra exposed to 450 mg kg⁻¹ Cu under non-flooded (NF)/flooding (F) conditions for 90 d. S. integra grown in the F condition exhibited significant higher tolerance index (TI, determined by the ratio of total biomass in Cu treatments to control) (p < 0.05) than that in the NF condition, indicating soil flooding alleviated Cu toxicity to willow plants. The μ-XRF revealed that Cu was preferentially located in the root cap and meristematic zone of the root tips. Under the NF condition, the Cu intensity in the root epidermis was more highly concentrated than that of the F condition, suggesting the soil flooding significantly inhibited Cu uptake by S. integra. The pattern of the Cu spatial distribution in the S. integra stem indicated that the F condition severely reduced Cu transport via the xylem vessels as a consequence of decreasing the transpiration rate of leaves. To our knowledge, this is the first study to report the in vivo Cu distribution in S. integra in a scenario of co-exposure to the Cu and the soil flooding over a long period. The finding that Cu uptake varies significantly with flooding condition is relevant to the development of strategies for plants to detoxify the metals and to maintain the nutrient homeostasis.
Show more [+] Less [-]Chronic exposure to non-eruptive volcanic activity as cause of bronchiolar histomorphological alteration and inflammation in mice
2019
Camarinho, R. | Garcia, P.V. | Choi, H. | Rodrigues, A.S.
It is estimated that 10% of the worldwide population lives in the vicinity of an active volcano. However, volcanogenic air pollution studies are still outnumbered when compared with anthropogenic air pollution studies, representing an unknown risk to human populations inhabiting volcanic areas worldwide. This study was carried out in the Azorean archipelago of Portugal, in areas with active non-eruptive volcanism. The hydrothermal emissions within the volcanic complex of Furnas (São Miguel Island) are responsible for the emission of nearly 1000 tons of CO₂ per day, along with H₂S, the radioactive gas – radon, among others. Besides the gaseous emissions, metals (e.g., Hg, Cd, Al, Ni) and particulate matter are also released into the environment. We test the hypothesis that chronic exposure to volcanogenic air pollution alters the histomorphology of the bronchioles and terminal bronchioles, using the house mouse, Mus musculus, as bioindicator species. Mus musculus were live-captured at three different locations: two villages with active volcanism and a village without any type of volcanic activity (reference site). The histomorphology of the bronchioles (diameter, epithelium thickness, smooth muscle layer thickness, submucosa thickness and the histological evaluation of the peribronchiolar inflammation) and of the terminal bronchioles (epithelium thickness and classification) were evaluated. Mice chronically exposed to volcanogenic air pollution presented bronchioles with increased epithelial thickness, increased smooth muscle layer, increased submucosa thickness and increased peribronchiolar inflammation. Similarly, terminal bronchioles presented structural alterations consistent with bronchodysplasia. For the first time we demonstrate that chronic exposure to non-eruptive volcanically active environments causes inflammation and histomorphological alterations in mice lower airways consistent with asthma and chronic bronchitis. These results reveal that chronic exposure to non-eruptive volcanic activity represents a risk factor that can affect the health of the respiratory system of humans inhabiting hydrothermal areas.
Show more [+] Less [-]