Refine search
Results 981-990 of 5,149
The simultaneous capture of mercury and fine particles by hybrid filter with powder activated carbon injection Full text
2018
Jang, Ha-Na | Back, Seung-Ki | Sung, Jin-Ho | Kang, Youn-Suk | Jurng, Jongsoo | Seo, Yong-Chil
The hybrid filter (HF) was newly designed and operated with powder activated carbon (PAC) injection to capture mercury and fine particulate matter in the coal power plant. With PAC injection in HF operation, the capture efficiency of elemental mercury was clearly enhanced. When the injection rate of PAC increased from 0 to 20 mg/m3, the speciation fraction of elemental mercury significantly decreased from 85.19% to 3.76% at the inlet of the hybrid filter. The speciation fraction of oxidized mercury did not vary greatly, whereas the particulate mercury increased from 1.31% to 94.04%. It was clearly observed that the HF played a role in the capture of mercury and fine PM by leading the conversion of elemental mercury as particulate mercury and the growth of PM via electrode discharge in the HF operation with PAC injection.
Show more [+] Less [-]Elevated concentrations of perfluorohexanesulfonate and other per- and polyfluoroalkyl substances in Baiyangdian Lake (China): Source characterization and exposure assessment Full text
2018
Cui, Qianqian | Pan, Yitao | Zhang, Hongxia | Sheng, Nan | Dai, Jiayin
Novel 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) and legacy PFASs, such as perfluorohexane sulfonate (PFHxS), have been used to replace perfluorooctane sulfonate (PFOS), a known persistent organic pollutant. Thus, it is critical to understand these PFOS alternatives regarding their sources and concentrations in the natural environment. In this study, 41 surface water samples as well as edible aquatic organisms were collected from Baiyangdian Lake, the largest freshwater lake in Hebei Province, China. Perfluorooctanoate acid (PFOA) and PFHxS were the predominant PFASs detected in the surface water, reaching concentrations of 8 397.23 ng/L and 1 478.03 ng/L, respectively, with PFHxS accounting for the greatest proportion (∼80.00%) in most water samples. PFHxS (mean: 87.53 ng/g) and PFOS (mean: 35.94 ng/g) were also the most prevalent compounds detected in aquatic organisms. Estimated daily intake (EDI) values of PFOS (16.56 ng/kg bw/d) and PFHxS (16.11 ng/kg bw/d) via aquatic food and drinking water were the highest among PFASs, indicating potential exposure risks to residents. In addition, fish product consumption was the important exposure pathway for residents to PFOA, PFHxS, PFOS, and 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA). This study reports on the highest PFHxS levels ever recorded in surface water, suggesting that further quantification of PFHxS in human serum and assessment of its health risks to local residents are warranted and critical.
Show more [+] Less [-]Short- and medium-chain chlorinated paraffins in sediments from the Laizhou Bay area, North China: Implications for transportation from rivers to marine environment Full text
2018
Pan, Xiaohui | Tang, Jianhui | Tian, Chongguo | Li, Jun | Zhang, Gan
The concentrations of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) were measured for riverine and marine sediments from the Laizhou Bay area in order to investigate their spatial distributions, possible sources and transport behaviors. Concentrations of SCCPs and MCCPs in riverine sediments varied from 8.4 to 2000 ng g⁻¹ dw and from 1.8 to 3200 ng g⁻¹ dw, respectively. Higher concentrations were found exclusively at industrial sites. Emissions from local factories were the main source of CPs in river sediments of this region. It was 5–22 ng g-1 dw and 6–63 ng g⁻¹ dw with an average value of 11 ng g⁻¹ dw and 9 ng g⁻¹ dw for SCCPs and MCCPs in marine sediments of Laizhou Bay, respectively. In addition to riverine input, ship related emissions are suggested to be another important source of CPs in the Laizhou Bay. MCCPs/SCCPs values and compositional profiles of SCCPs were found to vary along with CP concentrations. A distinct shift to congener groups with shorter carbon chains and lower chlorination from emission sources to remote areas was noticed. The role of log octanol-water partition coefficient (LogKₒw) values indicated decisive in their transportation from emission sources to remote areas in the Laizhou Bay area.
Show more [+] Less [-]Transfers of embodied PM2.5 emissions from and to the North China region based on a multiregional input-output model Full text
2018
Yang, Xue | Zhang, Wenzhong | Fan, Jie | Yu, Jianhui | Zhao, Hongyan
Atmospheric PM₂.₅ pollution has become a global issue, and is increasingly being associated with social unrest. As a resource reliant local economy and heavy industry cluster, the North China region has become China's greatest emitter, and the source of much pollution spillover to outside regions. To address this issue, the current study investigates the transfers of embodied PM₂.₅ emissions to and from the North China region (which is taken to include Hebei, Henan, Shandong, and Shanxi, and is referred to here as HHSS). The study uses a top-down pollutant emission inventory and environmentally extended multi-regional input-output (EE-MRIO) model. The results indicate that the HHSS area exported a total of 660 Gg of embodied PM₂.₅ to other domestic provinces, mainly producing outflows to China's central coastal area (Jiangsu, Zhejiang, and Shanghai) and the Beijing-Tianjin region. HHSS also imported 224 Gg of embodied PM₂.₅ from other domestic regions, primarily from Inner Mongolia and the northeast. Furthermore, the transfer of embodied emissions often occurred between geographically adjacent areas to save costs; Beijing and Tianjin mainly transferred embodied pollution to Hebei and Shanxi, whilst Jiangsu, Shanghai, and Zhejiang tended to import embodied air pollutants from Shandong and Henan. At the sectoral level, the melting and pressing of metals, the production of non-metallic products, and electric and heat power production were the three dominant economic sectors for PM₂.₅ emissions, together accounting for 81% of total discharges. Capital formation played a key role in outflows (75%) in all sectors. Moreover, the virtual pollutant emissions exported to foreign countries also significantly affected HHSS′ discharges significantly, making up 340 Gg. Allocating responsibility for some proportion of HHSS′ emissions to the Beijing-Tianjin area and the central coastal provinces may be an effective approach for mitigating releases in HHSS.
Show more [+] Less [-]Impact of changes in climate on air pollution in Slovenia between 2002 and 2017 Full text
2018
Faganeli Pucer, Jana | Štrumbelj, Erik
Air pollutant levels depend on emissions but can also be affected by the meteorological situation. We examined air pollutant trends (PM₁₀, NO₂, O₃ and SO₂) in Slovenia, where in the past the main issue were SO₂ levels. Now, the population is still exposed to PM₁₀ and ozone levels that are above the recommended levels.Our goal was to assess if the levels of air pollutants were decreasing from 2002 to 2017 due to emission ceilings or were more influenced by changes in the meteorological situation. We modelled the relationship between levels, meteorological parameters, and seasonality and then used the models with the best estimated generalisation to adjust levels for meteorology. Models showed a significant relationship between meteorological parameters and PM₁₀, NO₂, and O₃ levels, but not SO₂. We analysed trends of raw and adjusted levels and compared them. Trends of PM₁₀ and SO₂ were decreasing at all locations for raw and adjusted data. The largest decrease was observed in SO₂ levels where the largest decrease in emissions occurred. Trends of NO₂ were also significant and negative at most locations. Levels of O₃ did not exhibit a significant trend at most locations.Results show that changes in the meteorological situation affected PM₁₀ levels the most, especially where the entire period (2002–2017) could be observed. There is strong empirical evidence that changes in meteorological parameters contributed to the decrease in PM₁₀ levels while the decrease in NO₂ and SO₂ levels can be attributed to emission ceilings.
Show more [+] Less [-]Water-soluble ions in PM2.5 during spring haze and dust periods in Chengdu, China: Variations, nitrate formation and potential source areas Full text
2018
Huang, Xiaojuan | Zhang, Junke | Luo, Bin | Wang, Lili | Tang, Guiqian | Liu, Zirui | Song, Hongyi | Zhang, Wei | Yuan, Liang | Wang, Yuesi
Hourly concentrations of water-soluble inorganic ions (Na⁺, NH₄⁺, K⁺, Mg²⁺, Ca²⁺, Cl⁻, NO₃⁻ and SO₄²⁻) in PM₂.₅ and related reactive gases were measured with a Gas and Aerosol Collector combined with Ion Chromatography (GAC-IC) in urban Chengdu from April 17 to May 27, 2017, during which both haze and dust episodes occurred frequently. Nitrate was the most abundant ion in PM₂.₅ and substantially increased during haze pollution with the NO₃⁻/SO₄²⁻ mass ratio increasing from 0.78 during clean period to 1.1 during haze period. Aerosols in Chengdu were generally ammonium-rich, wherein ammonium nitrate was primarily formed through homogeneous gas-phase reactions and limited by the availability of HNO₃, indicating that preferentially reducing the emissions of NOx could make for mitigating spring haze pollution in Chengdu. Backward trajectory clustering coupled with measured species and a potential source contribution function (PSCF) for PM₂.₅, PM₁₀/PM₂.₅, sulfate, nitrate, ammonium, and Ca²⁺ indicated that regionally transported pollutants from the southern and southeastern Sichuan Basin strongly contributed to springtime PM₂.₅ pollution in Chengdu, but long-distance transport from northwestern China also contributed to dust pollution. Moreover, the treatment of urban fugitive dust in southern Sichuan is also important for reducing coarse particles in Chengdu. Therefore, the improvement of air quality in Chengdu, even in the Sichuan Basin, requires the regional joint emission reduction of particles and gaseous precursors across the entire Sichuan Basin, especially for cities located in southeastern Sichuan Basin.
Show more [+] Less [-]Tree rings reveal the reduction of Cd, Cu, Ni and Pb pollution in the central region of São Paulo, Brazil Full text
2018
Locosselli, Giuliano Maselli | Chacón-Madrid, Katherine | Arruda, Marco Aurélio Zezzi | Pereira de Camargo, Evelyn | Lopes Moreira, Tiana Carla | Saldiva de André, Carmen Diva | André, Paulo Afonso de | Singer, Julio M. | Saldiva, Paulo H. N. (Paulo Hilário Nascimento) | Buckeridge, Marcos Silveira
The concern about environmental pollution has risen in the last decades because of its effects on human's health. However, evaluation of the exposure to certain pollutants is currently hampered by the availability of past environmental data. Tree rings are an alternative to reconstruct environmental variability of pre-instrumental periods. Nevertheless, this approach has some reported limitations including migration of chemical elements in the tree rings. The aim of this study was to evaluate the distribution of Cd, Cu, Hg, Na, Ni, Pb, Zn in the tree rings of Tipuana tipu (Fabaceae) to aid the reconstruction of past environmental pollution. We sampled trees in the central region of the city of São Paulo, Brazil, and scanned their tree rings using LA-ICP-MS. We used these data to evaluate the temporal trends of chemical elements under investigation. Results show a non-random distribution of these chemical elements within the tree rings, with higher content in the cell-walls of vessels and lower content in the fibers. Sodium was the only element intimately related to the axial parenchyma cells. Due to differences in elemental composition of xylem cells, temporal trends where evaluated using distinct quartiles of data distribution in each tree ring. The first quartile represents the lower content found in fibers and parenchyma, while the third quartile corresponds to the higher content found in vessels. Data from vessels better represent the decreasing trend of Cd, Cu, Pb, and Ni in the last three decades. This reduction is less significant for Na and Zn. Our results highlight the potential to improve the records of environmental pollution using data from different cells. Pronounced reduction in Pb may be attributed to the lead phase-out in gasoline, while the decreasing trend of Cd, Cu, Ni pollution is probably related to increasing efficiency of vehicles and the deindustrialization of São Paulo.Chemical elements are non-randomly distributed in tree rings. Chemical content of vessels cell-walls is a reliable record of metal pollution, which is decreasing in São Paulo.
Show more [+] Less [-]Distribution patterns of organic pollutants and microbial processes in marine sediments across a gradient of anthropogenic impact Full text
2018
Zoppini, A. | Ademollo, N. | Patrolecco, L. | Langone, L. | Lungarini, S. | Dellisanti, W. | Amalfitano, S.
Marine sediments are part of the hydrological cycle and the ultimate storage compartment of land-derived organic matter, including pollutants. Since relevant microbially-driven processes occurring at benthic level may affect the quality of the overall aquatic system, the necessity for incorporating information about microbial communities functioning for ecosystem modelling is arising. The aim of this field study was to explore the links occurring between sediment contamination patterns by three selected class of organic pollutants (Polycyclic Aromatic Hydrocarbons, PAHs, Nonylphenols, NPs, Bisphenol A, BPA) and major microbial properties (Prokaryotic Biomass, PB; total living biomass, C-ATP; Prokaryotic C Production rate, PCP; Community Respiration rate, CR) across a gradient of anthropogenic pollution. Sediments were sampled from 34 sites selected along 700 km of the western coastline of the Adriatic Sea. Organic contamination was moderate (PAHs <830 ng g⁻¹; NPs <350 ng g⁻¹; BPA <38 ng g⁻¹) and decreased southward. The amount of PAHs-associated carbon (C-PAHs) increased significantly with sediment organic carbon (OC), along with microbial functional rates. The negative relation between PCP/CR ratio and OC indicated the shift toward oxidative processes in response to organic pollution and potential toxicity, estimated as Toxic Equivalents (TEQs). Our outcomes showed that sediment organic contamination and benthic microbial processes can be intimately linked, with potential repercussions on CO₂ emission rates and C-cycling within the detritus-based trophic web.
Show more [+] Less [-]Proliferation of low-cost sensors. What prospects for air pollution epidemiologic research in Sub-Saharan Africa? Full text
2018
Amegah, A Kofi
Addressing the worsening urban air quality situation in Sub-Saharan Africa (SSA) is proving increasingly difficult owing to paucity of data on air pollution levels and also, lack of local evidence on the magnitude of the associated health effects. There is therefore the urgent need to expand air quality monitoring (AQM) networks in SSA to enable the conduct of high quality epidemiologic studies to help inform policies aimed at addressing air pollution and the associated health effects. In this commentary, I explore the prospects that the proliferation of low-cost sensors in recent times holds for air pollution epidemiologic research in SSA. This commentary is timely because most SSA governments do not see investments in air pollution control that requires assembling a network of sophisticated and prohibitively expensive instrumentation for AQM as necessary for improving and protecting public health. I conclude that, in a region that is bereft of air pollution data, the growing influx of low-cost sensors represents an excellent opportunity for bridging the data gap to inform air pollution control policies and regulations for public health protection. However, it is essential that only the most promising sensor technologies that performs creditably well in the harsh environmental conditions of the region are promoted.
Show more [+] Less [-]Measurement of methane emission into environment during natural gas purging process Full text
2018
Farzaneh-Gord, Mahmood | Pahlevan-Zadeh, Mohammad Sadegh | Ebrahimi-Moghadam, Amir | Rastgar, Saied
The main purpose of this study is to develop accurate equation for predicting methane emission into the environment during natural gas (NG) purging process. The process is carried out regularly in NG pressure reducing stations. For this purpose, a numerical investigation has been carried out to simulate NG exit flow from a purging valve during opening time. The simulation has been carried out using Ansys-Fluent code. To make the solution and results more similar to actual scenario, the valve is continuously opened in a transient turbulent flow. Initial condition, is assumed steady flow in the pipeline. Three-dimensional modeling is used to simulate the valve and connected pipe, and all of the effective parameters including, inlet pressure, pipeline diameter, valve diameter and purging process time (including the time which valve needs to get completely opened and also purging time) are investigated. For simplicity and also as the main component of NG is methane, methane is considered as working fluid (a real compressible gas). The numerical results show that discharging gas velocity is reached to a supersonic velocity at outlet section of valve. As the highest expected exit velocity is sonic velocity, the supersonic velocity is a surprised result. Looking at the streamlines show that this is due to a convergent-divergent nozzle occurrence (due to re-circulation zone near junction) in discharging pipe. Also results show that discharged mass flow rate has liner relation with pipeline pressure, second degree relation with valve diameter and has fourth-degree relation with valve to pipeline diameter ratio. To make the results more applicable for NG industry, two correlations have been developed for calculating the amount of released gas in steady state and unsteady state condition. Unsteady state correlation is valid for valve opening time and steady state correlation could be used while the valve is completely opened.
Show more [+] Less [-]