Refine search
Results 991-1000 of 6,546
Natural molecule coatings modify the fate of cerium dioxide nanoparticles in water and their ecotoxicity to Daphnia magna Full text
2020
Villa, Sara | Maggioni, Daniela | Hamza, Hady | Di Nica, Valeria | Magni, Stefano | Morosetti, Bianca | Parenti, Camilla Carla | Finizio, Antonio | Binelli, Andrea | Della Torre, Camilla
The ongoing development of nanotechnology has raised concerns regarding the potential risk of nanoparticles (NPs) to the environment, particularly aquatic ecosystems. A relevant aspect that drives NP toxicity is represented by the abiotic and biotic processes occurring in natural matrices that modify NP properties, ultimately affecting their interactions with biological targets. Therefore, the objective of this study was to perform an ecotoxicological evaluation of CeO₂NPs with different surface modifications representative of NP bio-interactions with molecules naturally occurring in the water environment, to identify the role of biomolecule coatings on nanoceria toxicity to aquatic organisms. Ad hoc synthesis of CeO₂NPs with different coating agents, such as Alginate and Chitosan, was performed. The ecotoxicity of the coated CeO₂NPs was assessed on the marine bacteria Aliivibrio fischeri, through the Microtox® assay, and with the freshwater crustacean Daphnia magna. Daphnids at the age of 8 days were exposed for 48 h, and several toxicity endpoints were evaluated, from the molecular level to the entire organism. Specifically, we applied a suite of biomarkers of oxidative stress and neurotoxicity and assessed the effects on behaviour through the evaluation of swimming performance. The different coatings affected the hydrodynamic behaviour and colloidal stability of the CeO₂NPs in exposure media. In tap water, NPs coated with Chitosan derivative were more stable, while the coating with Alginate enhanced the aggregation and sedimentation rate. The coatings also significantly influenced the toxic effects of CeO₂NPs. Specifically, in D. magna the CeO₂NPs coated with Alginate triggered oxidative stress, while behavioural assays showed that CeO₂NPs coated with Chitosan induced hyperactivity. Our findings emphasize the role of environmental modification in determining the NP effects on aquatic organisms.
Show more [+] Less [-]Effects of carbide slag, lodestone and biochar on the immobilization, plant uptake and translocation of As and Cd in a contaminated paddy soil Full text
2020
Liu, Guofei | Meng, Jun | Huang, Yanlan | Dai, Zhongmin | Tang, Caixian | Xu, Jianming
The contamination of arsenic (As) and cadmium (Cd) in paddy soils is widely reported and these two metals are difficult to be co-remediated due to the contrasting chemical behaviors. This poses a challenge to simultaneously decrease their availability in soil and accumulation in rice via immobilization by amendments, especially in in-situ fields. This study compared the effects of carbide slag, lodestone and biochar on the bioavailability of As and Cd in soil and their accumulation in rice tissues and root Fe–Mn plaque at tillering and mature stages in a paddy field. The addition of three amendments significantly limited the mobilization of As and Cd in soil and decreased their accumulations in brown rice by 30–52% and 9–21%, respectively. Carbide slag was most whereas lodestone least effective in As and Cd immobilization in the tested contaminated soils. Community Bureau of Reference (BCR) sequential extraction analysis showed that the amendments changed the forms of As and Cd to less-available. Activated functional groups of the amendments (e.g. –OH, C–O, OC–O, OH⁻ and CO₃²⁻) sequestered metals by precipitation, adsorption, ion exchange or electrostatic attributes contributed greatly to the As and Cd immobilization in soil. Furthermore, the amendments promoted the formation of Fe–Mn plaque in rice roots, which further limited the mobility of As and Cd in soil and prevented their transport from soil to rice roots. The application of carbide slag and biochar but not lodestone increased rice yield compared to the unamended control, indicating their applicability in situ remediation. Our study gives a strong reference to select immobilizing amendments for food safe production in co-contaminated paddy soils.
Show more [+] Less [-]Removal of triphenyl phosphate by nanoscale zerovalent iron (nZVI) activated bisulfite: Performance, surface reaction mechanism and sulfate radical-mediated degradation pathway Full text
2020
Chen, Ruxia | Yin, Hua | Peng, Hui | Wei, Xipeng | Yu, Xiaolong | Xie, Danping | Lu, Guining | Dang, Zhi
Recently, sulfate radical-based advanced oxidation processes (SR-AOPs) have been studied extensively for the removal of pollutants, however, few researches focused on the activation of bisulfite by nanoscale zerovalent iron (nZVI), especially, surface reaction mechanism and sulfate radical-mediated degradation pathway have not been elucidated in detail. In this study, influencing factors, the kinetics, transformation pathway and mechanism of triphenyl phosphate (TPHP) degradation in the nZVI/bisulfite system were systematically discussed. Compared with Fe²⁺, nZVI was found to be a more efficient and long-lasting activator of bisulfite via gradual generation of iron ions. The optimal degradation efficiency of TPHP (98.2%) and pseudo-first-order kinetics rate constant (kₒbₛ = 0.2784 min⁻¹) were obtained by using 0.5 mM nZVI and 2.0 mM bisulfite at the initial pH 3.0. Both Cl⁻ and NO₃⁻ inhibited the degradation of TPHP and the inhibitory effect of Cl⁻ was stronger than that of NO₃⁻ due to the higher reaction rate of Cl⁻ with •SO₄⁻. Furthermore, SEM, XRD and XPS characterization revealed that a thin passivation layer (Fe₂O₃, Fe₃O₄, FeOOH) deposited on the surface of fresh nZVI and a few iron corrosion products generated and assembled on the surface of reacted nZVI. Radical quenching tests identified that •SO₄⁻ was the dominant reactive oxidative species (ROS) for TPHP removal. Based on HRMS analysis, six degradation products were determined and a sulfate radical-mediated degradation pathway was proposed. In a word, this study revealed that the nZVI/bisulfite system had a great potential for the TPHP elimination in waterbody.
Show more [+] Less [-]Dietary intake of legacy and emerging halogenated flame retardants using food market basket estimations in Nanjing, eastern China Full text
2020
Jian, Kang | Zhao, Luming | Ya, Miaolei | Zhang, Yayun | Su, Huijun | Meng, Weikun | Li, Jianhua | Su, Guanyong
Food products are inevitably contaminated by flame retardants throughout their lifecycle (i.e., during production, use, and disposal). In order to evaluate the dietary intake of legacy and emerging halogenated flame retardants (HFRs) in typical market food in China, we investigate the distribution and profile of 27 legacy polybrominated diphenyl ethers (PBDEs) and 16 emerging HFRs (EHFRs) in 9 food categories (meat, poultry, aquatic food, eggs, dairy products, cereals, vegetables, nuts and fruits, and sugar). A total of 105 food samples collected from three markets in Nanjing, eastern China were included for evaluation. The highest concentrations of PBDEs and EHFRs were found in aquatic foods (means of 0.834 ng/g wet weight (ww) and 0.348 ng/g ww, respectively), and the lowest concentrations were found in sugar (means of 0.020 ng/g ww for PBDEs and 0.014 ng/g ww for EHFRs). 2,2′,4-tribromodiphenyl ether (BDE-17), a legacy HFR, and hexabromobenzene (HBBz), an EHFR, were the predominant pollutants in the investigated food samples. Concentrations of HBBz and 2,3-dibromopropyl tribromophenyl ether (DPTE) were comparable to those of some PBDEs in certain food samples. The concentrations of the total EHFRs and total PBDEs found in animal-based food samples were significantly greater than those in plant-based food samples. Comparison of the estimated total dietary intake of HFRs and their corresponding non-cancer reference dose (United States Environmental Protection Agency) suggests a low overall health risk. To the best of our knowledge, the present study is the first to simultaneously determine 27 PBDEs and 16 EHFRs in representative foods from Chinese markets. BDE-17, HBBz, and DPTE were the predominant congeners among the 43 investigated HFRs and meat and aquatic foods were the primary sources of PBDEs and EHFRs to the total local dietary intake.
Show more [+] Less [-]Impact of wastewater effluent pollution on stream functioning: A whole-ecosystem manipulation experiment Full text
2020
Pereda, Olatz | Solagaistua, Libe | Atristain, Miren | de Guzmán, Ioar | Larrañaga, Aitor | von Schiller, Daniel | Elosegi, Arturo
The ecological effects of wastewater treatment plant (WWTP) effluents on stream ecosystems cause growing concern. However, it is difficult to assess these effects as most streams receiving WWTP effluents are also affected by other stressors. We performed a whole-ecosystem manipulation experiment following a BACI design (Before-After/Control-Impact) in order to exclude the influence of other potentially confounding factors. We diverted part of the effluent of a large tertiary urban WWTP into a small, unpolluted stream, and studied its effects on ecosystem structure and functioning over two years (i.e., one year before and one year after the effluent diversion). Although highly diluted (final concentration in the receiving stream averaged 3%), the effluent promoted biofilm chlorophyll-a and biomass (2.3 and 2.1 times, respectively), exo-enzymatic activities (phosphatase 2.2 and glucosidase 4.2 times) and invertebrate-mediated organic matter decomposition (1.4 times), but reduced phosphorus uptake capacity of the epilithic biofilm down to 0.5 of the initial values. Biofilm metabolism, reach-scale nutrient uptake and microbially-mediated organic matter decomposition were not affected. Our results indicate that even well treated and highly diluted WWTP effluents can also affect the structure of the biofilm community and stream ecosystem functioning.
Show more [+] Less [-]Long-term exposure to outdoor and household air pollution and blood pressure in the Prospective Urban and Rural Epidemiological (PURE) study Full text
2020
Arku, Raphael E. | Bräuer, Michael | Ahmed, Suad H. | AlHabib, Khalid F. | Avezum, Alvaro | Bo, Jian | Choudhury, Tarzia | Dans, Antonio ML. | Gupta, Rajiv | Iqbal, Romaina | Ismail, Noorhassim | Kelishadi, Roya | Khatib, Rasha | Koon, Teo | Kumar, Rajesh | Lanas, Fernando | Lear, Scott A. | Wei, Li | Lopez-Jaramillo, Patricio | Mohan, Viswanathan | Poirier, Paul | Puoane, Thandi | Rangarajan, Sumathy | Rosengren, Annika | Soman, Biju | Caklili, Ozge Telci | Yang, Shunyun | Yeates, Karen | Yin, Lu | Yusoff, Khalid | Zatoński, Tomasz | Yūsuf, Sālim | Hystad, Perry
Exposure to air pollution has been linked to elevated blood pressure (BP) and hypertension, but most research has focused on short-term (hours, days, or months) exposures at relatively low concentrations. We examined the associations between long-term (3-year average) concentrations of outdoor PM₂.₅ and household air pollution (HAP) from cooking with solid fuels with BP and hypertension in the Prospective Urban and Rural Epidemiology (PURE) study. Outdoor PM₂.₅ exposures were estimated at year of enrollment for 137,809 adults aged 35–70 years from 640 urban and rural communities in 21 countries using satellite and ground-based methods. Primary use of solid fuel for cooking was used as an indicator of HAP exposure, with analyses restricted to rural participants (n = 43,313) in 27 study centers in 10 countries. BP was measured following a standardized procedure and associations with air pollution examined with mixed-effect regression models, after adjustment for a comprehensive set of potential confounding factors. Baseline outdoor PM₂.₅ exposure ranged from 3 to 97 μg/m³ across study communities and was associated with an increased odds ratio (OR) of 1.04 (95% CI: 1.01, 1.07) for hypertension, per 10 μg/m³ increase in concentration. This association demonstrated non-linearity and was strongest for the fourth (PM₂.₅ > 62 μg/m³) compared to the first (PM₂.₅ < 14 μg/m³) quartiles (OR = 1.36, 95% CI: 1.10, 1.69). Similar non-linear patterns were observed for systolic BP (β = 2.15 mmHg, 95% CI: −0.59, 4.89) and diastolic BP (β = 1.35, 95% CI: −0.20, 2.89), while there was no overall increase in ORs across the full exposure distribution. Individuals who used solid fuels for cooking had lower BP measures compared to clean fuel users (e.g. 34% of solid fuels users compared to 42% of clean fuel users had hypertension), and even in fully adjusted models had slightly decreased odds of hypertension (OR = 0.93; 95% CI: 0.88, 0.99) and reductions in systolic (−0.51 mmHg; 95% CI: −0.99, −0.03) and diastolic (−0.46 mmHg; 95% CI: −0.75, −0.18) BP. In this large international multi-center study, chronic exposures to outdoor PM₂.₅ was associated with increased BP and hypertension while there were small inverse associations with HAP.
Show more [+] Less [-]Monitoring of microplastics in the clam Donax cuneatus and its habitat in Tuticorin coast of Gulf of Mannar (GoM), India Full text
2020
Narmatha Sathish, M. | Immaculate Jeyasanta, K. | Patterson, Jamila
Microplastics (MPs) in the marine environment are ubiquitous. The ingestion of these pollutants by marine organisms has drawn global attention. This work studies the distribution pattern and characteristics of MPs found in the body of the clam Donax cuneatus and its environment in order to understand the possible relationship between the MP concentration in the environment (water and sediment) and that in the clam’s body. Samples of D. cuneatus were collected from the coast between Vembar and Periyathazhai in Tuticorin district along GoM. MP concentrations range from 0.6 to 1.3 items/g (wet weight) in clams, 10–30 items/l in water, and 24–235 items/kg in sediment. Small-sized clams contain the highest concentration of MPs. Hence it is hypothesised that allometric relationship exists between body size and MP concentration, depending on the surface-area to volume ratio. MP abundance in clam body has a clear, positive, significant correlation with MP abundance in sediment but not with abundance of MP in water. Microplastics of fiber type with size 100–250 μm have a predominant presence in clams. The study identified ten types of polymers, of which polyethylene is the most common polymer in all sample types. FTIR-ATR spectra and surface morphology indicate that most of the microplastics have been strongly weathered. Energy dispersive X-ray spectroscopy analysis detected heavy metals associated with MPs like Cd, Pb, Cu, Zn, Ni and Fe. Filter-feeding clams like Donax sp. can provide valuable information on the spatial patterns of MP distribution, and so can act as bio-indicators in monitoring MP pollution in coastal areas.
Show more [+] Less [-]Spatiotemporal variability, source apportionment, and acid-neutralizing capacity of atmospheric wet base-cation deposition in China Full text
2020
Zhang, Qiongyu | Wang, Qiufeng | Zhu, Jianxing | Xu, Li | Chen, Zhi | Xiao, Jingfeng | He, Nianpeng
Atmospheric wet deposition of base cations (BCs) plays a significant role in providing plant nutrients and buffering acidification. However, the temporal dynamic of wet BC deposition in China during the past two decades remain unclear. Here, we used long-term monitoring and literature data since 2000 to assess the temporal dynamics (seasonal and inter-annual variation), spatial patterns, main influencing factors, source apportionment, and capacity to neutralize the acidity of wet BC depositions at site, regional, and national scales. The results showed that total wet deposition of BCs was, on average, 2.12 keq ha⁻¹ yr⁻¹, where Ca²⁺ accounted for 65.57% of the total deposition, followed by Na⁺ (13.21%), Mg²⁺ (13.68%), and K⁺ (7.55%). Qinghai-Tibet had significantly lower BC deposition fluxes than northern, southern, and central China, as well as Inner Mongolia. Exchangeable BCs in soil, PM₁₀ in the atmosphere, energy consumption, and cement production are significantly related to wet BC deposition, which account for 79.17% of the variation in the spatial deposition of BC. Influenced by the strategies to control acid rain and particulate matter in China, interannual variations showed a stabilization trend after a continuous decline from 2000 to 2017, which can be explained by inter-annual changes in PM₁₀, energy consumption and cement production. Statistical methods confirmed that 45.95% of wet BC deposition was derived from crustal contributions, 27.78% from sea salt sources, and 26.27% from anthropogenic sources. Furthermore, we found that wet deposition of BCs neutralized 84.85% of the acidity due to NO₃⁻ and SO₄²⁻ depositions. Under the emissions reduction strategy, there has been a decrease in the deposition of BC. However, SO₄²⁻ and NO₃⁻ depositions decreased faster than BC deposition, which buffered a higher proportion of acidic depositions. Our findings contribute to an improved understanding of wet BC deposition in China, an evaluation of their capacity to neutralize acidity, and important parameters for acidification models.
Show more [+] Less [-]Exposure to etoxazole induces mitochondria-mediated apoptosis in porcine trophectoderm and uterine luminal epithelial cells Full text
2020
Park, Wonhyoung | Lim, Whasun | Park, Sunwoo | Whang, Kwang-Youn | Song, Gwonhwa
Etoxazole is an organofluorine insecticide widely used in agriculture. Exposure to insecticides is a serious environmental problem owing to their cytotoxic effects in humans and animals. Reproductive toxicity of various organofluorine insecticides have been shown in previous studies. However, few studies have evaluated the toxicity of etoxazole in mammals. We aimed to examine the toxic effects of etoxazole in porcine trophectoderm (pTr) and uterine luminal epithelial (pLE) cells. To estimate the effects of etoxazole, we conducted assays after treatment with multiple concentration of etoxazole (0, 2, 4, 6 and 9 μM) to pTr and pLE cells for 0–72 h. Etoxazole decreased the cell proliferation, viability, and migration of pTr and pLE cells. Further, etoxazole induced apoptosis via cell cycle arrest and disruption of mitochondrial membrane potential. We also found that pro-apoptotic proteins and endoplasmic reticulum (ER) stress-response proteins were activated in response to etoxazole. Finally, we observed that etoxazole altered the PI3K/AKT and MAPK signaling pathways and the mRNA expression of genes associated with implantation. Collectively, these results suggest that etoxazole disrupts normal cellular physiology and might cause early implantation failure.
Show more [+] Less [-]Experimental and theoretical insights into kinetics and mechanisms of hydroxyl and sulfate radicals-mediated degradation of sulfamethoxazole: Similarities and differences Full text
2020
Gao, Lingwei | Mao, Qiming | Luo, Shuang | Cao, Linying | Xie, Xiande | Yang, Yuan | Deng, Yunfeng | Wei, Zongsu
Hydroxyl radical (•OH)- and sulfate radical (▪)-based advanced oxidation technologies (AOTs) have been proven an effective method to remove antibiotics in wastewater treatment plants (WWTPs). This study aims to gain insights into kinetics and mechanisms of neutral sulfamethoxazole (SMX) degradation, a representative antibiotic, by •OH and ▪ using an experimental and theoretical approach. First, the second-order rate constants (k) of SMX with •OH and ▪ were determined to be (7.27 ± 0.43) × 10⁹ and (2.98 ± 0.32) × 10⁹ M⁻¹ s⁻¹ in UV/H₂O₂ and UV/persulfate (UV/PS) systems, respectively. The following theoretical calculations at the M06–2X level of theory revealed that addition of radicals to the benzene ring is the most favorable first-step reaction for both •OH and ▪, but that ▪ exhibits higher energy barriers and selectivity than •OH due to steric hindrance. We further analyzed subsequent reactions and, interestingly, our findings closely corroborated HOMO/LUMO distributions of SMX to the oxidation pathways. Finally, the estimation of energy consumption for UV alone, •OH–, and ▪–mediated oxidation processes was compared. These comparative results, for the first time, provide insights into the similarities and differences of degradation of SMX by •OH/▪ at the molecular level and can help improve antibiotics removal using radical based AOTs in WWTPs.
Show more [+] Less [-]