Refine search
Results 991-1000 of 7,290
Carbonation treatment of gasification fly ash from municipal solid waste using sodium carbonate and sodium bicarbonate solutions Full text
2022
Qin, Junde | Zhang, Yunhui | Yi, Yaolin | Fang, Mingliang
In recent years, slagging-gasification technology has received increasing attention in treating municipal solid waste (MSW). Compared with conventional incineration, the higher temperature in the slagging-gasification process optimizes its residue composition, and gasification fly ash (GFA) is the only unreused solid residue. Although GFA is a potential civil engineering material, its high content of heavy metals, chlorides, and sulfates hinders its practical use. Moreover, although carbonation has proven to immobilize heavy metals in incineration fly ash, the conventional gas carbonation method cannot remove chlorides and sulfates. In this study, sodium bicarbonate (NaHCO₃) treatment was studied to treat GFA for the first time, and sodium carbonate (Na₂CO₃) was used for comparison. Different concentrations of NaHCO₃ and Na₂CO₃ solutions were used to treat the GFA, and comprehensive tests were conducted on the treated samples. The results indicated that NaHCO₃ treatment was effective in immobilizing Pb, Zn, Cu, and Ni in GFA, while Na₂CO₃ treatment could not effectively immobilize Pb and Zn. Both NaHCO₃ and Na₂CO₃ promoted the removal of chlorides and sulfates in GFA. The wastewater from the NaHCO₃ treatment contained fewer heavy metals compared with those from water washing or Na₂CO₃ treatment, benefitting its treatment or reuse.
Show more [+] Less [-]Characterization of two novel strains of Pseudomonas aeruginosa on biodegradation of crude oil and its enzyme activities Full text
2022
Muthukumar, Balakrishnan | Al Salhi, Mohamad S. | Narenkumar, Jayaraman | Devanesan, Sandhanasamy | Tentu Nageswara Rao, | Kim, Woong | Rajasekar, Aruliah
Crude oil contaminant is one of the major problem to environment and its removal process considered as most challenging tool currently across the world. In this degradation study, crude oil hydrocarbons are degraded on various pH optimization conditions (pH 2, 4,6,7,8 and 10) by using two biosurfactant producing bacterial strains Pseudomonas aeruginosa PP3 and Pseudomonas aeruginosa PP4. During crude oil biodegradation, degradative enzymes alkane hydroxylase and alcohol dehydrogenase were examined and found to be higher in PP4 than PP3. Biodegradation efficiency (BE) of crude oil by both PP3 and PP4 were analysed by gas chromatography mass spectroscopy (GCMS). Based on strain PP3, the highest BE was observed in pH 2 and pH 4 were found to be 62% and 69% than pH 6, 7, 8 and 10 (47%, 47%, 49% and 45%). It reveals that PP3 was survived effectively in acidic condition and utilized the crude oil hydrocarbons. In contrast, the highest BE of PP4 was observed in pH 7 (78%) than pH4 (68%) and pH's 2, 6, 8 and 10 (52%, 52%, 43% and 53%) respectively. FTIR spectra results revealed that the presence of different functional group of hydrocarbons (OH, –CH₃, CO, C–H) in crude oil. GCMS results confirmed that both strains PP3 and PP4 were survived in acidic condition and utilized the crude oil hydrocarbons as sole carbon sources. This is the first observation on biodegradation of crude oil by the novel strains of Pseudomonas aeruginosa in acidic condition with higher BE. Overall, the extracellular enzymes and surface active compounds (biosurfactant) produced by bacterial strains were played a key role in crude oil biodegradation process.
Show more [+] Less [-]Opposite selection effects of nZVI and PAHs on bacterial community composition revealed by universal and sphingomonads-specific 16S rRNA primers Full text
2022
Sheng, Dong | Chen, Minjie | Chen, Qiqi | Huang, Yili
Next-generation sequencing method employing the sphingomonads-specific and universal 16s rRNA primers were applied to analyze the response of soil bacterial community to continuous stress of nanoscale zero-valent iron (nZVI) and/or polycyclic aromatic hydrocarbons (PAHs) under suspended conditions. The group specific primer greatly improves taxonomic resolution, the overall OTU numbers increased from 12 by universal primer to 42 by sphingomonads-specific primer. It was found that nZVI and PAHs had opposite selection effects on bacterial community composition, furthermore, the abundance of Sphingopyxis was positively related to nZVI while negatively related to PAHs, whereas abundances of Sphingobium and Sphingosinicella were positively related to PAHs (p < 0.01). The improved taxonomic resolution helps identify the potential keystone taxa, which provides valuable information for future bioremediation technology such as synthetic microbiome.
Show more [+] Less [-]Prenatal exposure to triphenyl phosphate activated PPARγ in placental trophoblasts and impaired pregnancy outcomes Full text
2022
Hong, Jiabin | Jiang, Mengzhu | Guo, Lihao | Lin, Juntong | Wang, Yao | Tang, Huanwen | Liu, Xiaoshan
The health risks of triphenyl phosphate (TPhP) have increased since its widespread application. Using placental trophoblast cell line JEG-3, we demonstrated that TPhP could induce endoplasmic reticulum stress (ERS) and cell apoptosis through PPARγ-mediated lipid metabolism. However, the developmental toxicity of TPhP through the placenta is not known. In this study, prenatal TPhP exposure to mice was investigated. Pregnant mice were orally exposed to TPhP (1 and 5 mg/kg) from embryonic day 0 (E0) until delivery. The results showed that TPhP could accumulate in placenta and impair pregnancy outcomes. After exposure, at E18, placental hormone chorionic gonadotrophin and testosterone levels were significantly decreased, but progesterone and estradiol levels were significantly increased, and placental angiogenesis was activated in the low-dose exposure group. While, in the high-dose exposure group, only estradiol levels were significantly increased. Different with the effect on hormone level or angiogenesis, TPhP significantly increased PPARγ and its regulated lipid transport proteins FABP, FATP, and CD36, and induced lipid accumulation in placental trophoblasts of both low- and high-exposure group. RNA-seq analysis of the placenta identified differentially expressed genes that were mainly involved in the ERS and MAPK signaling pathways. Western blot analysis verified that the protein levels related to ERS stress and apoptosis were significantly increased. To further confirm the role of PPARγ in TPhP mediated placental toxicity, pregnant mice were orally exposed to TPhP (1 mg/kg) or TPhP (1 mg/kg) + GW9662 (PPARγ inhibitor, 2 mg/kg) from E0 until delivery. The results showed that GW9662 could ameliorate the effect of TPhP on placental lipid accumulation, ERS and cell apoptosis, suggesting that PPARγ mediated the placental toxicity of TPhP. Overall, our results indicated that prenatal TPhP exposure impaired pregnancy outcomes, at least partly through PPARγ regulated function of trophoblast.
Show more [+] Less [-]Identifying low-PM2.5 exposure commuting routes for cyclists through modeling with the random forest algorithm based on low-cost sensor measurements in three Asian cities Full text
2022
Wu, Tzong-Gang | Chen, Yan-Da | Chen, Bang-Hua | Harada, Kouji H. | Lee, Kiyoung | Deng, Furong | Rood, Mark J. | Chen, Chu-Chih | Tran, Cong-Thanh | Chien, Kuo-Liong | Wen, Tzai-Hung | Wu, Chang-Fu
Cyclists can be easily exposed to traffic-related pollutants due to riding on or close to the road during commuting in cities. PM₂.₅ has been identified as one of the major pollutants emitted by vehicles and associated with cardiopulmonary and respiratory diseases. As routing has been suggested to reduce the exposures for cyclists, in this study, PM₂.₅ was monitored with low-cost sensors during commuting periods to develop models for identifying low exposure routes in three Asian cities: Taipei, Osaka, and Seoul. The models for mapping the PM₂.₅ in the cities were developed by employing the random forest algorithm in a two-stage modeling approach. The land use features to explain spatial variation of PM₂.₅ were obtained from the open-source land use database, OpenStreetMap. The total length of the monitoring routes ranged from 101.36 to 148.22 km and the average PM₂.₅ ranged from 13.51 to 15.40 μg/m³ among the cities. The two-stage models had the standard k-fold cross-validation (CV) R² of 0.93, 0.74, and 0.84 in Taipei, Osaka, and Seoul, respectively. To address spatial autocorrelation, a spatial cross-validation approach applying a distance restriction of 100 m between the model training and testing data was employed. The over-optimistic estimates on the predictions were thus prevented, showing model CV-R² of 0.91, 0.67, and 0.78 respectively in Taipei, Osaka, and Seoul. The comparisons between the shortest-distance and lowest-exposure routes showed that the largest percentage of reduced averaged PM₂.₅ exposure could reach 32.1% with the distance increases by 37.8%. Given the findings in this study, routing behavior should be encouraged. With the daily commuting trips expanded, the cumulative effect may become significant on the chronic exposures over time. Therefore, a route planning tool for reducing the exposures shall be developed and promoted to the public.
Show more [+] Less [-]Polybrominated dibenzo-p-dioxins/furans (PBDD/Fs) in soil around municipal solid waste incinerator: A comparison with polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) Full text
2022
Song, Aimin | Li, Huiru | Liu, Mingyang | Peng, Ping'an | Hu, JianFang | Sheng, Guoying | Ying, Guangguo
Polybrominated dibenzo-p-dioxins/furans (PBDD/Fs) and polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) share similar toxicities and thermal origins, e.g., municipal solid waste incinerator (MSWI). Recently, PBDD/Fs from MSWI attracted rising concern because their important precursors, i.e., brominated flame retardants (BFRs), were frequently found in various wastes for landfill or MSWI feedstock. So far, however, little is known about PBDD/Fs and their associated risks in the vicinal environments of MSWI. Here we analyzed PBDD/Fs and PCDD/Fs in 29 soil samples collected around a multiyear large-scale MSWI, and compared their spatial distributions, sources and risks. PBDD/Fs demonstrated comparable concentrations and toxic equivalent quantities (TEQs) to PCDD/Fs in these samples. Spatially, both the concentrations of PBDD/Fs and PCDD/Fs decreased outwards from the MSWI, and exhibited significant linear correlations with the distances from the MSWI in the southeast downwind soil, suggesting the influence of the MSWI on its vicinal soil environment. However, the existence of other dioxin sources concealed its influence beyond 6 km. PBDD/Fs in the soils were characterized by highly-brominated PBDFs, especially Octa-BDF, and their sources were diagnosed as the MSWI and diesel exhaust; PCDD/Fs, however, were dominated by highly-chlorinated PCDDs, particularly Octa-CDD, and were contributed individually or jointly by the MSWI, automobile exhaust and pentachlorophenol (PCP)/Na-PCP. The non-carcinogenic risks of dioxins in all the soil samples were acceptable, but their carcinogenic risks in 17% of the samples were unacceptable. These samples were all located close to the MSWI and highways, therefore, the land use of these two high-risk zones should be cautiously planed.
Show more [+] Less [-]Soil contamination by microplastics in relation to local agricultural development as revealed by FTIR, ICP-MS and pyrolysis-GC/MS Full text
2022
Chouchene, Khawla | Nacci, Tommaso | Modugno, Francesca | Castelvetro, Valter | Ksibi, Mohamed
Plastic film mulching and use of wastewaters for irrigation have been common agricultural practices for over half a century in Tunisia, especially in arid regions, resulting in the undesired creation of a pathway for microplastics (MPs) to enter farmland soil. In order to assess the extent and characteristics of soil contamination by MPs in the Moknine province, an area of intensive agricultural practices, 16 farmland soil samples were collected and characterized. The total concentration of targeted MPs was 50–880 items/kg; among them, the most common MPs type being polypropylene (PP), mainly occurring as white/transparent fibers with small size (cross section <0.3 mm). SEM images of MPs surfaces revealed multiple features related to environmental exposure and degradation. ATR-FTIR spectroscopy and pyrolysis-GC/MS analyses enabled the accurate identification of MPs separated from the embedding soil micro- and macro-aggregates. Finally, contamination of the polymeric microparticles with a broad range of metals was found by ICP-MS analysis, suggesting that MPs can be vectors for transporting heavy metals in the soil and indicators of soil contamination as a result of mismanagement of industrial wastewaters.
Show more [+] Less [-]Occurrence of ingested human litter in winter arctic foxes (Vulpes lagopus) from Svalbard, Norway Full text
2022
Hallanger, Ingeborg G. | Ask, Amalie | Fuglei, Eva
The aim of this study is to assess the occurrence of human litter ingested by arctic foxes (Vulpes lagopus) caught in Svalbard, Norway, in winter when scavenging is at its highest. Twenty arctic fox stomachs and intestines were examined for human litter and plastic using the protocol from the Oslo-Paris Convention (OSPAR) for monitoring plastic ingestion by the northern fulmar (Fulmarus glacialis) (human litter and plastic >1 mm). The arctic foxes had ingested human litter at a low frequency (15%, 3 out of 20 foxes). Despite the low sample size, we do not regard ingestion of human litter as an immediate threat to the arctic fox population in Svalbard.
Show more [+] Less [-]Speciation and release risk of heavy metals bonded on simulated naturally-aged microplastics prepared from artificially broken macroplastics Full text
2022
Chen, Gaobin | Fu, Qianmin | Tan, Xiaofei | Yang, Hailan | Luo, Yang | Shen, Maocai | Ku, Yenlin
The negative impact of microplastics (MPs) act as metals vectors to environment and ecosystem have been paid more and more attention, and the accumulation risk of them to human body through the food chains and food webs needs to attract attention. In addition, the MPs bonded with heavy metals transport from river into the sea with high salinity may also have metals release risk. Herein, natural aged microplastics prepared from artificially broken macroplastics adsorbed with heavy metals accumulated from the natural environment were tested for their states and release risk in several simulated solution (NaCl and gastrointestinal solutions) to understand their effects on environment and human health. The adsorption capacity of different heavy metals on MPs was different during natural aging process proved by four-acid digestion method. Metals with high accumulation (including Pb, As, Cr, Mn, Ni, Zn, Co, Cu and Cd) on NAMPs were selected for further study. Results obtained via three-step extraction method showed that these heavy metals were mainly present as acid-extractable and reducible ions, which were characterized by high bioavailability. Release experiments suggested the notable Mn, Zn, As, Cr, Cu and Ni release in NaCl solution, and significant release of Mn, Zn, As, Cr, Cu, Pb and Ni in gastrointestinal solutions. The high metal release ratio in the simulated gastric solution was attributed to the weak binding of metal ions to NAMPs in acidic environment. This study will play a vital rule in assessing the ecological risks associated with MPs in natural environment.
Show more [+] Less [-]Sediment spiking and equilibration procedures to achieve partitioning of uranium similar to contamination in tropical wetlands near a mine site Full text
2022
Harford, Andrew J. | Simpson, Stuart L. | Humphrey, Christopher L. | Parry, David L. | Kumar, Anu | Chandler, Lisa | Stauber, Jennifer L. | van Dam, Rick A.
The derivation of sediment quality guideline values (SQGVs) presents significant challenges. Arguably the most important challenge is to conduct toxicity tests using contaminated sediments with physico-chemistry that represents real-world scenarios. We used a novel metal spiking method for an experiment that ultimately aims to derive a uranium SQGV. Two pilot studies were conducted to inform the final spiking design, i.e. percolating a uranyl sulfate solution through natural wetland sediments. An initial pilot study that used extended mixing equilibration phases produced hardened sediments not representative of natural sediments. A subsequent percolation method produced sediment with similar texture to natural sediment and was used as the method for spiking the sediments. The range of total recoverable uranium (TR-U) concentrations achieved was 8–3200 mg/kg. This reflected the concentrations found in natural wetlands and water management ponds found on a uranium mine site and was above natural levels. Dilute-acid extractable uranium (AE-U) concentrations were >80% of total concentrations, indicating that much of the uranium in the spiked sediment was labile and potentially bioavailable. The portion of TR-U extractable as AE-U was similar at the start and end of the 4.5-month field-deployment. Porewater uranium (PW–U) analyses indicated that partition coefficients (Kd) were 2000–20,000 L/kg, and PW-U was greater in post- than pre-field-deployed samples when TR-U was ≤1500 mg/kg, indicating the binding became weaker during the field-deployment period. At higher spiked-U concentrations, the PW-U was lower post-field-deployment. Comparing the physico-chemical data of the spiked sediments with environmental monitoring data from sediments in the vicinity of a uranium mining operation indicated that they were representative of sediments contaminated by mining and that the U-spiked sediments had a clear U concentration gradient. This confirmed the suitability of the spiking procedure for preparing sediments that were suitable for deriving a SQGV for uranium.
Show more [+] Less [-]