Refine search
Results 1-10 of 180
Determination of organohalogenated contaminants in liver of harbour porpoises (Phocoena phocoena) stranded on the Belgian North Sea coast
2002
Covaci, Adrian | Van de Vijver, Kristin Inneke | De Coen, Wim | Das, Krishna | Bouquegneau, Jean-Marie | Blust, Ronny | Schepens, Paul | MARE - Centre Interfacultaire de Recherches en Océanologie - ULiège
peer reviewed
Show more [+] Less [-]A field method using microcosms to evaluate transfer of Cd, Cu, Ni, Pb and Zn from sewage sludge amended forest soils to Helix aspersa snails.
2002
Scheifler, R | Ben Brahim, M | Vaufleury, Annette Gomot-De | Carnus, J-M | Badot, P-M | Laboratoire Chrono-environnement (UMR 6249) (LCE) ; Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC) ; Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC) | Centre de Sfax ; Centre de Sfax | Institut National de la Recherche Agronomique (INRA)
International audience | Juvenile Helix aspersa snails exposed in field microcosms were used to assess the transfer of Cd, Cu, Ni, Pb and Zn from forest soils amended with liquid and composted sewage sludge. Zn concentrations and contents were significantly higher in snails exposed to liquid and composted sludge after 5 and 7 weeks of exposure, when compared with control. Trends were less clear for the other metals. Present results show that Zn, among the cocktail of metallic trace elements (MTE) coming from sewage sludge disposal, represents the principal concern for food chain transfer and secondary poisoning risks. The microcosm design used in this experiment was well suited for relatively long-term (about 2 months) active biomonitoring with H. aspersa snails. The snails quickly indicated the variations of MTE concentrations in their immediate environment. Therefore, the present study provides a simple but efficient field tool to evaluate MTE bioavailability and transfer.
Show more [+] Less [-]Phosphorus sorption in subsurface constructed wetlands: investigations focused on calcareous materials and their chemical reactions
2002
Molle, Pascal | Lienard, A. | Grasmick, A. | Iwema, A.
Phosphorus removal from wastewater has been of growing interest for some decades to avoid eutrophication in surface water. In subsurface constructed wetlands precipitation and adsorption are the main mechanisms responsible of P uptake. The use of calcareous media is attractive because of p-ca interactions. Two media (calcite and recycled crushed concrete (rcc)) were examined in batch and continuous systems. They show attractive sorption capacities using batch experiments, however experiments carried out in open reactors pointed out some limitation in retention capacities and effluent quality. rcc was sensitive to a strong dissolution leading to a quick phosphorus precipitation but induced high conductivity and ph values in the treated water. Calcite efficiency depended on the material dissolution rate, directly linked to the carbonate equilibrium of the solution. Microscopic observations of the calcite surface show crystal making of phosphorus precipitate. Crystal growth seems to be the main P uptake once materials surfaces are covered. No experimental condition allows to reach an effluent concentration below 2 mgp.l-1.
Show more [+] Less [-]Phosphorus sorption in subsurface constructed wetlands: investigations focused on calcareous materials and their chemical reactions
2002
Molle, Pascal | Lienard, A. | Grasmick, A. | Iwema, A. | Qualité des eaux et prévention des pollutions (UR QELY) ; Centre national du machinisme agricole, du génie rural, des eaux et forêts (CEMAGREF) | Laboratoire de Génie des Procédés et Sciences des Aliments ; Université Montpellier 2 - Sciences et Techniques (UM2) | Agence de l'eau Rhône Méditerranée Corse
[Departement_IRSTEA]GMA [TR1_IRSTEA]21 - TECHNEAU / EPURE | International audience | Phosphorus removal from wastewater has been of growing interest for some decades to avoid eutrophication in surface water. In subsurface constructed wetlands precipitation and adsorption are the main mechanisms responsible of P uptake. The use of calcareous media is attractive because of p-ca interactions. Two media (calcite and recycled crushed concrete (rcc)) were examined in batch and continuous systems. They show attractive sorption capacities using batch experiments, however experiments carried out in open reactors pointed out some limitation in retention capacities and effluent quality. rcc was sensitive to a strong dissolution leading to a quick phosphorus precipitation but induced high conductivity and ph values in the treated water. Calcite efficiency depended on the material dissolution rate, directly linked to the carbonate equilibrium of the solution. Microscopic observations of the calcite surface show crystal making of phosphorus precipitate. Crystal growth seems to be the main P uptake once materials surfaces are covered. No experimental condition allows to reach an effluent concentration below 2 mgp.l-1.
Show more [+] Less [-]Development of a multichannel UV-spectroradiometer for field measurements
2002
Hanken, T. | Tueg, H.
Design criteria and performances of reed bed filters for the treatment of washing parlour effluents
2002
Lienard, A. | Esser, D. | Houdoy, D. | Sabalcagaray, P.
Conçus initialement pour le traitement des eaux usées domestiques, les filtres plantés de roseaux ont été adaptés pour le traitement des effluents de lavage de salles de traite pour fournir une alternative au stockage et épandage. Pour simplifier les système en vue de réduire les coûts d'investissement, plusieurs sites expérimentaux ont été construits, modifiés si nécessaire et suivis. Placé à la suite d'une fosse toutes eaux de 3 à 9 m3, la configuration la plus aboutie consiste en 2 étages des filtres plantés à flux verticaux chacun étant composé de 2 filtres alimentés en alternance chaque semaine. La surface totale active correspond à 0.25m2 par vache laitière pour les eaux blanches seules (machine à traire et tank à lait) et 0.4m2 par vache lorsque s'y ajoutent les eaux vertes de lavage des quais et murs de la salle de traite. Les filtres du 1er étage occupent 65% de la surface totale. Observées dans 3 exploitations agricoles laitières, les concentrations obtenues atteignent une fourchette de 50 à 180 mg/L en DCO, 5 à 75 mg/L en DBO5 et 10 à 60 mg/L en MES. La nitrification qui est considérée comme un bon indicateur du potentiel d'oxydo-réduction dans le réacteur n'est certes pas complète mais beaucoup plus élevée que dans le cas de filtres à sable étudiés pour le même objectif alors que plusieurs d'entre eux ont colmaté. / Initially designed for the treatment of domestic wastewater, Vertical Flow Reed Bed Filters [VFRBF] have been adapted for washing parlour effluents to study the feasibility of the treatment of such effluents instead of their storage and land spreading. It was necessary to adapt the design of VFRBF to minimise the investment costs. Several experimental sites have been built, monitored and progressively adapted. Following a septic tank of 3 to 9 m3, the best design was considered to be: 2 stages of VFRBF in series each composed of 2 filters which are alternately fed on a weekly rhythm. The total active area is approximately equivalent to 0.25 m2 per milking cow for the washing effluent of the milking machine and milk-storage tank and 0.4 m2 per milking cow when the washing effluents from the floor and walls of the milking parlour are added to the previous ones. The 1st stage filters takes up 65 % of the total area. Based on a survey done in 3 farms, the concentrations achieved a range of 50 to 180 mgL-1 in COD, 5 to 75 mgL-1 in BOD5, 10 to 60 mgL-1 in SS. The nitrification, which can be considered as a good indicator of the redox potential within the filter media, was not complete but much more effective than in sand filters studied for the same purpose but some of them have clogged.
Show more [+] Less [-]Simulated effects of dryland cropping intensification on soil organic matter and greenhouse gas exchanges using the DAYCENT ecosystem model
2002
Del Grosso, S. | Ojima, D. | Parton, W. | Mosier, A. | Peterson, G. | Schimel, D.
We present evidence to show that DAYCENT can reliably simulate soil C levels, crop yields, and annual trace gas fluxes for various soils. DAYCENT was applied to compare the net greenhouse gas fluxes for soils under different land uses. To calculate net greenhouse gas flux we accounted for changes in soil organic C, the C equivalents of N2O emissions and CH4 uptake, and the CO2 costs of N fertilizer production. Model results and data show that dryland soils that are depleted of C due to conventional till winter wheat/fallow cropping can store C upon conversion to no till, by reducing the fallow period, or by reversion to native vegetation. However, model results suggest that dryland agricultural soils will still be net sources of greenhouse gases although the magnitude of the source can be significantly reduced and yields can be increased upon conversion to no till annual cropping.
Show more [+] Less [-]Tillage, crop rotation, and organic amendment effect on changes in soil organic matter
2002
Rickman, R. | Douglas, C. | Albrecht, S. | Berc, J.
Carbon sequestration in agricultural soils is controlled by the balance of added organic residues and microbial oxidation of both residues and native organic matter (OM) as moderated by management and tillage. The PC-based model CQESTR predicts decomposition of residues, organic amendments and soil OM, based on cropping practices. CQESTR uses RUSLE (Revised Universal Soil Loss Equation) crop rotation and management practice, crop production, and operation databases. These data are supplemented with residue nitrogen and soil OM, bulk density, and layer thickness. CQESTR was calibrated with soil carbon data from 70-year-long experiments at the Research Center at Pendleton, OR. The calibrated model provides estimates with a 95% confidence interval of 0.33% OM. Validation at 11 independent sites resulted in a matching of observed with calculated OM with a 95% confidence interval of 0.55% OM. A 12th site, with a history of severe erosion, provided a poor match.
Show more [+] Less [-]Polyacrylamide preparations for protection of water quality threatened by agricultural runoff contaminants
2002
Entry, J.A. | Sojka, R.E. | Watwood, M. | Ross, C.
Waste streams associated with a variety of agricultural runoff sources are major contributors of nutrients, pesticides and enteric microorganisms to surface and ground waters. Water soluble anionic polyacrylamide (PAM) was found to be a highly effective erosion-preventing and infiltration-enhancing polymer, when applied at rates of 1-10 g m (super -3) in furrow irrigation water. Water flowing from PAM treated irrigation furrows show large reductions in sediment, nutrients and pesticides. Recently PAM and PAM+CaO and PAM+Al(SO (sub 4) ) (sub 3) mixtures have been shown to filter bacteria, fungi and nutrients from animal wastewater. Low concentrations of PAM [175-350 g PAM ha (super -1) as PAM or as PAM+CaO and PAM+Al(SO (sub 4) ) mixture] applied to the soil surface, resulted in dramatic decreases (10 fold) of total, coliform and fecal streptococci bacteria in cattle, fish and swine wastewater leachate and surface runoff. PAM treatment also filtered significant amounts of NH (sub 4) , PO (sub 4) and total P in cattle and swine wastewater. This points to the potential of developing PAM as a water quality protection measure in combination with large-scale animal feeding operations. Potential benefits of PAM treatment of animal facility waste streams include: (1) low cost, (2) easy and quick application, (3) suitability for use with other pollution reduction techniques. Research on the efficacy of PAM for removal of protozoan parasites and viruses and more thorough assessment of PAM degradation in different soils is still needed to completely evaluate PAM treatment as an effective waste water treatment. We will present analysis and feasibility of using PAM, PAM+Al(SO (sub 4) ) (sub 3) , and PAM+CaO application for specific applications. Our results demonstrate their potential efficacy in reducing sediment, nutrients and microorganisms from animal production facility effluents. Abstract
Show more [+] Less [-]Particulate and non-particulate fractions of soil organic carbon under pastures in the Southern Piedmont USA
2002
Pasture management can be effective at sequestering soil organic C. We determined the depth distribution of particulate organic C (POC), non-particulate organic C (NPOC), particulate-to-total organic C (POC-to-TOC) ratio, and particulate organic C-to-N (POC-to-N) ratio under pastures near Watkinsville, GA, USA. POC was highly related with total organic C (TOC), but became an increasingly larger portion of TOC near the soil surface, where both pools were greatest. POC and NPOC were (i) greater under pasture than under conservation-tillage cropland, (ii) greater when pasture was grazed than when hayed, (iii) marginally greater with higher fertilization of pasture, (iv) greater with higher frequency of endophyte infection of tall fescue, and (v) greater under increasing stand age of grass. Soil under pasture comparisons that had greater TOC content had (i) larger improvements in POC than in NPOC and (ii) lower POC-to-N ratios, suggesting improvement in biochemical soil quality, as well as soil C sequestration.
Show more [+] Less [-]