Refine search
Results 1-3 of 3
EIN3/EIL (Ethylene Insensitive3 / Ethylene Insensitive3 Like) Protein Family in Phaseolus vulgaris: Identification, Evolution and Expression Analysis within the Genome
2023
Simay Ezgi Akbulut | Zehra Şafak | Aybüke Okay | Kimia Amirina | Ilker Büyük
Ethylene insensitive-3 (EIN3) / Ethylene insensitive-3-like (EIL) protein family is a small family of transcription factors specific to plants that play role in plant growth and development under various environmental conditions. In this study, various bioinformatics approaches were used to make an in-depth identification of the EIN3/EIL family at both the gene and protein levels. So, 11 Pvul-EIL genes were identified and their approximate locations were determined. Various biochemical and physicochemical properties of EIL proteins in Phaseolus vulgaris have been described. It was determined that Pvul-EIL proteins had a length of 447-651 amino acids and a molecular weight of 51.08-70.68 kDa. All duplications occurring in the Pvul-EIL genome were segmental type. It was observed that conserved motif, gene structure and phylogeny analyses all yielded similar results. For instance, it has been understood that genes with same motif type and number have similar gene structures and were located under the same branch in the phylogenetic tree. Pvul-EIL protein homology modeling showed that DNA binding properties and protein structure were similar to Arabidopsis EIN3. According to cis-element analysis, Pvul-EIL genes are engaged in a wide range of functions, including tissue-specific, stress, and hormone-sensitive expression. Additionally, RNAseq data was used to perform a comparative expression analysis of EIL genes. Various Pvul-EIL gene expression levels were detected under salt and drought stress. This is the first study to check the gene expression levels in P. vulgaris using in-silico detection and characterization of EIL genes. Therefore, obtained results can form the basis for future studies.
Show more [+] Less [-]Genome-wide Identification of PMEI Genes in Wild Olives (Olea europaea sylvestris L.) by Bioinformatic Analysis
2024
Tevfik Hasan Can | Tamer Kuşaksız | Emine Berberoğlu | Emine Dilşat Yeğenoğlu
In the present study, 47 PMEI type 1 genes and 57 PMEI type 2 genes were identified with bioinformatic analysis. The PMEI genes were localized separately on chromosomes 1, 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21 and 22, but mainly at the level of the scaffold. The biological functions of the PMEI type 1 genes were found to be in the areas of biological regulation, metabolism and cellular functions. Their cellular localization appears to be associated with cell parts. For the PMEI type 2 genes, the biological functions were determined as biological regulation, metabolic and cellular functions. A total of 393 Arabidopsis miRNAs targeting 47 olive PMEI type 1 genes were identified. Two specific miRNAs targeting the OePMEI1-07 gene were found (ath-miR8168 and ath-miR774b-5p). For the PMEI type 2 genes, 269 Arabidopsis miRNAs were found, including 14 specific miRNAs targeting OPMEI2-02, OPMEI2-03, OPMEI2-27, OPMEI2-28, OPMEI2-29, OPMEI2-30, OPMEI2-40 and OPMEI2-54. These results suggest that PMEI genes in olives may not only play a role in cell development, germ cell formation and plant growth, but also play an important role in abiotic and biotic stress conditions in the olive.
Show more [+] Less [-]Working with Proteins in silico: A Review of Online Available Tools for Basic Identification of Proteins
2017
Caner Yavuz | Zahide Neslihan Öztürk
Increase in online available bioinformatics tools for protein research creates an important opportunity for scientists to reveal characteristics of the protein of interest by only starting from the predicted or known amino acid sequence without fully depending on experimental approaches. There are many sophisticated tools used for diverse purposes; however, there are not enough reviews covering the tips and tricks in selecting and using the correct tools as the literature mainly state the promotion of the new ones. In this review, with the aim of providing young scientists with no specific experience on protein work a reliable starting point for in silico analysis of the protein of interest, we summarized tools for annotation, identification of motifs and domains, determination isoelectric point, molecular weight, subcellular localization, and post-translational modifications by focusing on the important points to be considered while selecting from online available tools.
Show more [+] Less [-]