Refine search
Results 1-2 of 2
Water as a trophic currency in dryland food webs Full text
2014
Allen, Daniel C. | McCluney, Kevin E | Elser, Stephen R | Sabo, John L
Water is essential for life on Earth, yet little is known about how water acts as a trophic currency, a unit of value in determining species interactions in terrestrial food webs. We tested the relative importance of groundwater and surface water in riparian food webs by manipulating their availability in dryland floodplains. Primary consumers (crickets) increased in abundance in response to added surface water and groundwater (contained in moist leaves), and predators (spiders and lizards) increased in abundance in response to added surface water, in spite of the presence of a river, an abundant water source. Moreover, the relative magnitude of organism responses to added water was greatest at the most arid site and lowest at the least arid site, mirroring cricket recruitment, which was greatest at the least arid site and lowest at the most arid site. These results suggest that water may be a key currency in terrestrial dryland food webs, which has important implications for predicting ecosystem responses to human‐ and climate‐related changes in hydrology and precipitation.
Show more [+] Less [-]Predator water balance alters intraguild predation in a streamside food web Full text
2019
Leinbach, Israel L. | McCluney, Kevin E. | Sabo, John L.
Previous work suggests that animal water balance can influence trophic interactions, with predators increasing their consumption of water‐laden prey to meet water demands. But it is unclear how the need for water interacts with the need for energy to drive trophic interactions under shifting conditions. Using manipulative field experiments, we show that water balance influences the effects of top predators on prey with contrasting ratios of water and energy, altering the frequency of intraguild predation. Water‐stressed top predators (large spiders) negatively affect water‐laden basal prey (crickets), especially male prey with higher water content, whereas alleviation of water limitation causes top predators to switch to negatively affecting energy‐rich midlevel predators (small spiders). Thus, the relative water and energy content of multiple prey, combined with the water demand of the top predator, influences trophic interactions in ways that can alter the strength of intraguild predation. These findings underscore the need for integration of multiresource approaches for understanding implications of global change for food webs.
Show more [+] Less [-]