Refine search
Results 1-4 of 4
Determination of the upper temperature limit of water loss by food systems Full text
2011
Matveev, Yu. I.
A method for estimation of the upper temperature limit of water loss by food systems during preservation (drying, baking, extrusion, smoking, etc.) is proposed. These temperatures are related to the lower and higher critical solution temperatures, which were shown to depend on the chemical structure of system components. A determination method for the lower and higher critical solution temperatures in the plasticization curves obtained by calorimetry was developed.
Show more [+] Less [-]Development of food-grade Pickering oil-in-water emulsions: Tailoring functionality using mixtures of cellulose nanocrystals and lauric arginate Full text
2020
Angkuratipakorn, Thamonwan | Chung, Cheryl | Koo, Charmaine K.W. | Mundo, Jorge L Muriel | McClements, David J. | Decker, Eric A. | Singkhonrat, Jirada
In this study, we investigated the tailoring of food emulsions using interactions between rice bran cellulose nanocrystals (CNCs) and lauric arginate (LAE), which is food-grade cationic surfactant. Complexes of anionic CNCs and cationic LAE (CNCs/LAE) were formed through electrostatic attraction which were characterized using isothermal titration calorimetry (ITC), turbidity, and zeta-potential measurements. The saturation complexes could be formed at ratios of 1:2 (w/w) CNCs-to-LAE. Furthermore, the physical and oxidative stability of oil-in-water emulsions containing lipid droplets coated by CNCs/LAE complexes was determined. Electrostatic complexes formed from 0.02% CNCs and 0.1% LAE produced stable Pickering emulsions that were resistant to droplet coalescence. It was also exhibited that 0.02% CNCs and 0.1% LAE complexes stabilized-emulsions was able to extend the lag phase to 20 days for lipid hydroperoxide and to 14 days for hexanal production. This study shows that food-grade Pickering emulsions with good stability can be produced by CNCs with LAE complexes.
Show more [+] Less [-]Thermal Behavior of Potato Starch and Water-Vaporization Behavior of Its Paste Controlled with Amino Acid and Peptide-Rich Food Materials Full text
2010
The particular effect of 4 kinds of amino acid and peptide-rich food material (APRM) containing different charged amino acid contents on the gelatinization and retrogradation behavior of potato starch granules and on the water-vaporization behavior was analyzed by differential scanning calorimetry, rapid viscoanalysis, x-ray diffractometry, thermal gravimetry-differential thermal analysis, and pulsed NMR. APRM with a high-charged amino acid content produced unique gelatinization and retrogradation behavior in terms of an elevated gelatinization temperature, reduced viscosity, higher setback, and lower retrograded starch melting enthalpy. The recovered x-ray diffraction intensity decreased with increasing charged amino acid content. APRM with high-charged amino acid content could provide an improved paste having easy vaporization of external water in the swollen starch granules due to the reduced swelling.
Show more [+] Less [-]Formulation and Stabilization of Concentrated Edible Oil-in-Water Emulsions Based on Electrostatic Complexes of a Food-Grade Cationic Surfactant (Ethyl Lauroyl Arginate) and Cellulose Nanocrystals Full text
2018
Bai, Long | Xiang, Wenchao | Huan, Siqi | Rojas, Orlando J.
We report on high-internal-phase, oil-in-water Pickering emulsions that are stable against coalescence during storage. Viscous, edible oil (sunflower) was emulsified by combining naturally derived cellulose nanocrystals (CNCs) and a food-grade, biobased cationic surfactant obtained from lauric acid and L-arginine (ethyl lauroyl arginate, LAE). The interactions between CNC and LAE were elucidated by isothermal titration calorimetry (ITC) and supplementary techniques. LAE adsorption on CNC surfaces and its effect on nanoparticle electrostatic stabilization, aggregation state, and emulsifying ability was studied and related to the properties of resultant oil-in-water emulsions. Pickering systems with tunable droplet diameter and stability against oil coalescence during long-term storage were controllably achieved depending on LAE loading. The underlying stabilization mechanism was found to depend on the type of complex formed, the LAE structures adsorbed on the cellulose nanoparticles (as unimer or as adsorbed admicelles), the presence of free LAE in the aqueous phase, and the equivalent alkane number of the oil phase (sunflower and dodecane oils were compared). The results extend the potential of CNC in the formulation of high-quality and edible Pickering emulsions. The functional properties imparted by LAE, a highly effective molecule against food pathogens and spoilage organisms, open new opportunities in food, cosmetics, and pharmaceutical applications, where the presence of CNC plays a critical role in achieving synergistic effects with LAE.
Show more [+] Less [-]