Refine search
Results 1-4 of 4
Water footprint and impact of water consumption for food, feed, fuel crops production in Thailand Full text
2014
Gheewala S.H. | Silalertruksa T. | Nilsalab P. | Mungkung R. | Perret S. | Chaiyawannakarn N.
The proliferation of food, feed and biofuels demands promises to increase pressure on water competition and stress, particularly for Thailand, which has a large agricultural base. This study assesses the water footprint of ten staple crops grown in different regions across the country and evaluates the impact of crop water use in different regions/watersheds by the water stress index and the indication of water deprivation potential. The ten crops include major rice, second rice, maize, soybean, mungbean, peanut, cassava, sugarcane, pineapple and oil palm. The water stress index of the 25 major watersheds in Thailand has been evaluated. The results show that there are high variations of crop water requirements grown in different regions due to many factors. However, based on the current cropping systems, the Northeastern region has the highest water requirement for both green water (or rain water) and blue water (or irrigation water). Rice (paddy) farming requires the highest amount of irrigation water, i.e., around 10,489 million m3/year followed by the maize, sugarcane, oil palm and cassava. Major rice cultivation induces the highest water deprivation, i.e., 1862 million m3H2Oeq/year; followed by sugarcane, second rice and cassava. The watersheds that have high risk on water competition due to increase in production of the ten crops considered are the Mun, Chi and Chao Phraya watersheds. The main contribution is from the second rice cultivation. Recommendations have been proposed for sustainable crops production in the future. (Résumé d'auteur)
Show more [+] Less [-]Water Footprint and Impact of Water Consumption for Food, Feed, Fuel Crops Production in Thailand Full text
2014
Gheewala, Shabbir H. | Silalertruksa, Thapat | Nilsalab, Pariyapat | Mungkung, Rattanawan | Perret, Sylvain R. | Chaiyawannakarn, Nuttapon
The proliferation of food, feed and biofuels demands promises to increase pressure on water competition and stress, particularly for Thailand, which has a large agricultural base. This study assesses the water footprint of ten staple crops grown in different regions across the country and evaluates the impact of crop water use in different regions/watersheds by the water stress index and the indication of water deprivation potential. The ten crops include major rice, second rice, maize, soybean, mungbean, peanut, cassava, sugarcane, pineapple and oil palm. The water stress index of the 25 major watersheds in Thailand has been evaluated. The results show that there are high variations of crop water requirements grown in different regions due to many factors. However, based on the current cropping systems, the Northeastern region has the highest water requirement for both green water (or rain water) and blue water (or irrigation water). Rice (paddy) farming requires the highest amount of irrigation water, i.e., around 10,489 million m3/year followed by the maize, sugarcane, oil palm and cassava. Major rice cultivation induces the highest water deprivation, i.e., 1862 million m3H₂Oeq/year; followed by sugarcane, second rice and cassava. The watersheds that have high risk on water competition due to increase in production of the ten crops considered are the Mun, Chi and Chao Phraya watersheds. The main contribution is from the second rice cultivation. Recommendations have been proposed for sustainable crops production in the future.
Show more [+] Less [-]Interlinkage between water-energy-food for oil palm cultivation in Thailand Full text
2020
Jaroenkietkajorn, Ukrit | Gheewala, Shabbir H.
Biofuels for use in on-road transportation have been promoted in Thailand over the past decade to reduce dependence on imported fossil resources as well as possibly reducing greenhouse gas emissions. This has led to an increase in production of biodiesel which is produced from palm oil. However, as palm oil is also used for food, it is important to take this into consideration as well. Also, oil palm cultivation is rather water-intensive. Hence, it is necessary to analyze the interlinkage between water, food, and energy to have a holistic understanding and prevent trade-offs when addressing one issue in isolation. The water-energy-food nexus for oil palm cultivation in Thailand has been conducted following two widely used methods, the Water-Food-Energy Nexus (WFEN) and Water-Energy-Food (WEF) nexus assessment method. The results are demonstrated as a single score, which is easier for suggesting a suitable area for oil palm plantation. The assessment indicates the southern region of Thailand is the most suitable for oil palm plantation. The recommendation is consistent with the suggestion of the government, based on land and climate suitability. However, this study considers more comprehensive aspects including various other environmental aspects. Oil palm cultivation mainly relates to the amount of freshwater consumption, leading to the increment of fuel consumption for pumping water. On the other hand, the effectiveness of fresh fruit bunch yield (for food and energy production) should be developed in the future. Besides, the results recommend the central region for the expansion of oil palm cultivation in the future because of the availability of a good irrigation infrastructure.
Show more [+] Less [-]Modelling and optimisation of oil palm biomass value chains and the environment–food–energy–water nexus in peninsular Malaysia Full text
2021
James Rubinsin, Nowilin | Daud, Wan Ramli Wan | Kamarudin, Siti Kartom | Masdar, Mohd Shahbudin | Rosli, Masli Irwan | Samsatli, Sheila | Tapia, John Frederick D. | Wan Ab Karim Ghani, Wan Azlina | Hasan, Azhan | Lim, Kean Long
This study aims to develop a decision model to optimise the oil palm biomass value chains by minimising the environmental impact whiles generating economy value from their bioproducts. The model considers two major components, namely, a fuzzy analytic hierarchy (FAHP) framework and a multi-objective optimisation model. Both components will be used by integrating the priorities of the environmental and economic impacts obtained from experts' judgement with the multi-objective optimisation model to generate an optimal solution based on expert's judgement. The framework used to study different case study for the oil palm industry in Peninsular Malaysia. Results show that a maximum profit of 267,116,398 USD per year can be achieved. However, to minimise the environmental impact, a 34% cut of the profit is needed to reduce 91% of CO₂ emissions generated and 97% of water consumption. Moreover, the model generates optimal pathways by selecting the processing facilities that are needed in the value chain to achieve the objectives. The biomass or bio-product distribution networks around Peninsular Malaysia are also presented in this paper. Several scenarios are discussed to observe the effects on the optimal value chain solutions by manipulating the production level. On the basis of the results, the interactions of the environment–food–energy–water nexus are investigated. Therefore, this study can contribute to the improvement of oil palm industry policies while addressing sustainability issues through the proposed value chain model.
Show more [+] Less [-]