Refine search
Results 1-10 of 31
[Drinking water - an endangered food]
1982
Krueger, H.-W.
Water Management for Sustainable Food Production Full text
2020
Kannan, Narayanan | Anandhi, Aavudai
The agricultural community has a challenge of increasing food production by more than 70% to meet demand from the global population increase by the mid-21st century. Sustainable food production involves the sustained availability of resources, such as water and energy, to agriculture. The key challenges to sustainable food production are population increase, increasing demands for food, climate change, and climate variability, decreasing per capita land and water resources. To discuss more details on (a) the challenges for sustainable food production and (b) mitigation options available, a special issue on “Water Management for Sustainable Food Production” was assembled. The special issue focused on issues such as irrigation using brackish water, virtual water trade, allocation of water resources, consequences of excess precipitation on crop yields, strategies to increase water productivity, rainwater harvesting, irrigation water management, deficit irrigation, and fertilization, environmental and socio-economic impacts, and irrigation water quality. Articles covered several water-related issues across the U.S., Asia, Middle-East, Africa, and Pakistan for sustainable food production. The articles in the special issue highlight the substantial impacts on agricultural production, water availability, and water quality in the face of increasing demands for food and energy.
Show more [+] Less [-]Water source of the food security
2002
Singh, A.K. | Gautam, R.C. (Indian Agricultural Research Institute, New Delhi (India))
In irrigated as well as in rainfed areas, it is essential to work on the increase in water/ moisture-use efficiency of the crops. Since water is precious, suitable methods of irrigation and in-situ moisture conservation practices are to be adopted by the farmers on the basis of the suggestions made by the agricultural scientists of the country. In rainfed areas, suitable tillage can play a significant role in the conservation of moisture. Selection of crops and their varieties, fertilizer management and proper methods of sowing are the factors for increasing the moisture-use-efficiency and productivity. Methods of irrigations are to be modified in irrigated areas mainly to check the unnecessary loss of water.
Show more [+] Less [-]Water essential for food, health and environmental security
2002
Samra, J.S. | Sharma, B.R. (Indian Council of Agricultural Research, Krishi Bhavan, New Delhi (India))
The current financial crisis of irrigation sector is attributable to and characterized by inadequate budgetary allocations, low irrigation water rates and their poor recovery, inadequate maintenance of irrigation works, meagre financial resources available for organization and management, highly subsidized electricity for irrigation pumping and absence of any groundwater extraction charges and regulation policies. The 'business as usual' scenario of the irrigation sector, if allowed to continue, will add to the already severe financial crisis and make the perceived investments financially unviable and unsustainable. Sustaining the huge investment envisaged for the irrigation sector would require moving towards an "improved management" scenario.
Show more [+] Less [-]Food-energy-water nexus: A life cycle analysis on virtual water and embodied energy in food consumption in the Tamar catchment, UK Full text
2018
Salmoral, Gloria | Yan, Xiaoyu
Evaluations of food, energy and water (FEW) linkages are rapidly emerging in contemporary nexus studies. This paper demonstrates, from a food consumption perspective, the potential of life cycle thinking in understanding the complex and often “hidden” linkages between FEW systems. Our study evaluates the upstream virtual water and embodied energy in food consumption in the Tamar catchment, South West England, distinguishing between domestic production and imports origin. The study also evaluates key inputs, including virtual nutrients and animal feed, when tracking supply chain of food products. Based on current dietary patterns and food products selection, the catchment consumes annually 834 TJ, 17 hm³ and 244 hm³ of energy, blue water and green water, respectively. Tamar is not self-sufficient in terms of food and requires imports of food products, as well as imports of virtual nutrients and animal feed for local production. Consequently, 51% of the embodied energy and 88% blue and 45% green virtual water in food consumed within the catchment are imported. Most of the embodied energy (58%) and green virtual water (90%) are because of animal feed production, where nearly half of embodied energy (48%) and green virtual water (42%) come from imports. 92% of blue virtual water is used for irrigation and primarily happens elsewhere due to imports. Irrigation is the process that demands the largest amount of energy for the crop-based products, with 38% of their total energy demand, followed by fertilisers production (24%). Our study illustrates water and energy hotspots in the food life cycle and highlights potential FEW risks and trade-offs through trade. This is useful considering potential unexpected changes in trade under recent global socio-political trends. Currently available databases and software make LCA a key tool for integrated FEW nexus assessments.
Show more [+] Less [-]Energy, water and food: exploring links in irrigated cropping systems
2014
Jackson, T. | Hanjra, Munir A.
Energy, water and food: exploring links in irrigated cropping systems
2014
Jackson, T. | Hanjra, Munir A.
Interlinkages between human agency, water use efficiency and sustainable food production Full text
2020
Lyu, Haoyang | Dong, Zengchuan | Pande, Saket
Efficient use of water and nutrients in crop production are critical for sustainable water and crop production systems. Understanding the role of humans in ensuring water and nutrient use efficiency is therefore an important ingredient of sustainable development. Crop production functions are often defined either as functions of water and nutrient deficiency or are based on economic production theory that conceptualizes production as a result of economic activities that take in inputs such as water, capital and labor and produce crop biomass as output. This paper fills a gap by consistently treating water and nutrient use and human agency in crop production, thus providing a better understanding of the role humans play in crop production. Uptake of water and nutrients are two dominant biophysical processes of crop growth while human agency, including irrigation machine power, land-preparing machine power and human labor force, determine limits of water and nutrient resources that are accessible to crops. Two crops, i.e., winter wheat and rice, which account for the majority of food crop production are considered in a rapidly developing region of the world, Jiangsu Province, China, that is witnessing the phenomenon of rural to urban migration. Its production is modeled in two steps. First water and nutrient efficiencies, defined as the ratios of observed uptake to quantities applied, are modeled as functions of labor and machine power (representing human agency). In the second step, crop yields are modeled as functions of water and nutrient efficiencies multiplied by amounts of water and fertilizers applied. As a result, crop production is predicted by first simulating water and nutrient uptake efficiencies and then determining yield as a function of water and nutrients that are actually taken up by crops. Results show that modeled relationship between water use efficiency and human agency explains 68% of observed variance for wheat and 49% for rice. The modeled relationship between nutrient use efficiency and human agency explains 49% of the variance for wheat and 56% for rice. The modeled relationships between yields and actual uptakes in the second step explain even higher percentages of observed the variance: 73% for wheat and 84% for rice. Leave-one-out cross validation of yield predictions shows that relative errors are on average within 5% of the observed yields, reinforcing the robustness of the estimated relationship and of conceptualizing crop production as a composite function of bio-physical mechanism and human agency. Interpretations based on the model reveal that after 2005, mechanization gradually led to less labor being used relative to machinery to achieve same levels of water use efficiency. Labor and irrigation equipment, on the other hand, were found to be complimentary inputs to water use efficiency. While the results suggest interventions targeting machinery are most instrumental in increasing wheat productivity, they may exasperate rural – urban migration. Policy strategies for alleviating rural-urban migration while ensuring regional food security can nonetheless be devised where appropriate data are available.
Show more [+] Less [-]Footprints of water and energy inputs in food production -- Global perspectives Full text
2009
K̲h̲ān, Shahbāz | Hanjra, Munir A.
During the second half of the 20th century the global food production more than doubled and thus responded to the doubling of world population. But the gains in food production came at a cost, leaving a significant environmental footprint on the ecosystem. Global cropland, plantations and pastures expanded, with large increases in fossil energy, water, and fertilizer inputs, imprinting considerable footprint on the environment. Information from pre eminent publications such as Nature, Science, PNAS and scholarly journals is synthesized to assess the water and energy footprints of global food production. The data show that the footprints are significant, both locally, national and globally and have consequences for global food security and ecosystem health and productivity. The literature nearly agrees that global food production system generates considerable environmental footprints and the situation would likely get worrisome, as global population grows by 50% by 2050. Investments are needed today to buffer the negative impacts of food production on the environment. Investments to boost water productivity and improve energy use efficiency in crop production are two pathways to reduce the environmental footprint.
Show more [+] Less [-]A Water–Energy–Food Nexus Perspective on the Challenge of Eutrophication Full text
2018
Reddy, V Ratna | Cunha, Davi Gasparini Fernandes | Kurian, Mathew
This paper attempts to understand and explore the problem of eutrophication in the context of agriculture with the help of a nexus perspective. Eutrophication is significantly linked to water and energy resources with theoretically well-defined trade-offs and threshold levels. While looking at the linkages between water and land resources comprehensively, our paper questions the present approach to designing and implementing watershed management, and analyses the effects of agricultural intensification, especially in dry regions. Eutrophication is the process by which excessive nutrient loads in water bodies lead to undesirable water-quality problems and the degradation of the overall aquatic ecosystem. Due to limited information and knowledge on water and soil quality in most countries, farmers continue to use fertilizers at an increasing rate and agricultural run-off has been carrying ever more nitrogen and phosphorus into water bodies. This is likely to become a vicious cycle of eutrophication affecting food and water security. Of late, soil- and water-conservation interventions, like watershed development, are further reducing run-off. It is argued that there is a need to rethink the assumptions under which watershed interventions are designed and implemented.
Show more [+] Less [-]