Refine search
Results 1-3 of 3
Review of water quality criteria for water reuse and risk-based implications for irrigated produce under the FDA Food Safety Modernization Act, produce safety rule Full text
2019
Rock, Channah M. | Brassill, Natalie | Dery, Jessica L. | Carr, Dametreea | McLain, Jean E. | Bright, Kelly R. | Gerba, Charles P.
Questions related to the safety of alternative water sources, such as recycled water or reclaimed water (including grey water, produced water, return flows, and recycled wastewater), for produce production have been largely un-explored at the detail warranted for protection of public health. Additionally, recent outbreaks of Escherichia coli (E. coli) in fresh produce, in which agricultural water was suspected as the source, coupled with heightened media coverage, have elevated fruit and vegetable safety into the forefront of public attention. Exacerbating these concerns, new Federal regulations released by the U.S. Food and Drug Administration (FDA) as part of implementation of the FDA Food Safety Modernization Act (FSMA), require testing of agricultural water quality for generic E. coli. Here, we present a review of water quality criteria – including surface water, groundwater recreational water, and water reuse – in an attempt to better understand implications of new FDA regulations on irrigated produce. In addition, a Quantitative Microbial Risk Assessment (QMRA) was conducted to estimate risks from pathogen contamination of food crops eaten fresh under the context of FDA regulations to provide perspective on current water reuse regulations across the country. Results indicate that irrigation water containing 126 CFU/100 mL of E. coli correspond to a risk of GI illness (diarrhea) of 9 cases in 100,000,000 persons (a 0.000009% risk) for subsurface irrigation, 1.1 cases in 100,000 persons (a 0.0011% risk) for furrow irrigation, and 1.1 cases in 1000 persons (a 0.11% risk) for sprinkler irrigation of lettuce. In comparison to metrics in states that currently regulate the use of recycled water for irrigation of food crops eaten fresh, the FDA FSMA water quality metrics are less stringent and therefore the use of recycled water presents a reduced risk to consumers than the FDA regulations. These findings, while limited to a one-time exposure event of lettuce irrigated with water meeting FSMA water quality regulations, highlight the need for additional assessments to determine if the scientific-basis of the regulation is protective of public health.
Show more [+] Less [-]Sustainable irrigation technologies: a water-energy-food (WEF) nexus perspective towards achieving more crop per drop per joule per hectare
2022
Taguta, C. | Dirwai, T. L. | Senzanje, A. | Sikka, Alok | Mabhaudhi, Tafadzwanashe
Sustainable irrigation technologies: a water-energy-food (WEF) nexus perspective towards achieving more crop per drop per joule per hectare Full text
2022
Taguta, C. | Dirwai, T. L. | Senzanje, A. | Sikka, Alok | Mabhaudhi, Tafadzwanashe
Sustainable agricultural intensification requires irrigation methods and strategies to minimize yield penalties while optimizing water, land and energy use efficiencies. We assessed, from a silo-based and integrated water-energy-food (WEF) nexus perspective, the performance of irrigation technologies in different agro-climatic regions. Secondary to this, we assessed the impact of adopting systematic approaches such as the WEF nexus on improving efficiency in irrigated agriculture through irrigation modernization. The evidence-based perspectives of silo-based performances individually considered the metrics of yield (Y), water use efficiency (WUE), and energy productivity (EP). The WEF nexus approach applied sustainability polygons to integrate the three metrics into a nexus index representing the holistic performance of the irrigation technologies. Silo-based performance in temperate regions suggests net gains for WUE (+1.10 kg m-3 ) and Y (+6.29 ton ha-1 ) when transitioning from furrow to sprinkler irrigation, with a net loss in EP (-3.82 ton MJ-1 ). There is potential for a net loss on EP (-3.33 ton MJ-1 ) when transitioning from furrow to drip system in temperate regions. The best performance of irrigation technologies in dry regions in water, energy and food silos was achieved by sprinkler, drip and furrow irrigation systems, respectively. Thus, appraising irrigation technologies from a silos perspective promotes individual silos, which renders an unsustainable picture of the performance of irrigation systems. The integrative WEF nexus approach successfully highlighted the trade-offs and synergies in the nexus of water, energy and food in irrigated agriculture. Drip irrigation led all irrigation technologies in WEF nexus performance in dry (21.44 unit2 ), tropical (23.98 unit2 ), and temperate regions (47.28 unit2 ). Overall, the irrigation modernization pathway to drip technology from either furrow or sprinkler systems improves irrigated agriculture’s WEF nexus performance in all three regions for more crop per drop per joule per hectare under climate change. This can promote inclusive and sustainable irrigation development within the planetary boundaries.
Show more [+] Less [-]