Refine search
Results 1-3 of 3
A Systems Approach To Assess Trade Dependencies in U.S. Food–Energy–Water Nexus Full text
2019
Vora, Nemi | Fath, Brian D. | Khanna, Vikas
We present a network model of the United States (U.S.) interstate food transfers to analyze the trade dependency with respect to participating regions and embodied irrigation impacts from a food–energy–water (FEW) nexus perspective. To this end, we utilize systems analysis methods including the pointwise mutual information (PMI) measure to provide an indication of interdependencies by estimating probability of trade between states. PMI compares observed trade with a benchmark of what is statistically expected given the structure and flow in the network. This helps assess whether dependencies arising from empirically observed trade occur due to chance or preferential attachment. The implications of PMI values are demonstrated by using Texas as an example, the largest importer in the U.S. grain transfer network. We find that strong dependencies exist not only just with states (Kansas, Oklahoma, Nebraska) providing high volume of transfer to Texas but also with states that have comparatively lower trade (New Mexico). This is due to New Mexico’s reliance on Texas as an important revenue source compared to its other connections. For Texas, import interdependencies arise from geographical proximity to trade. As these states primarily rely on the commonly shared High Plains aquifer for irrigation, overreliance poses a risk for water shortage for food supply in Texas. PMI values also indicate the capacity to trade more (the states are less reliant on each other than expected), and therefore provide an indication of where the trade could be shifted to avoid groundwater scarcity. However, some of the identified states rely on GHG emission intensive fossil fuels such as diesel and gasoline for irrigation, highlighting a potential tradeoff between crop water footprint and switching to lower emissions pumping fuels.
Show more [+] Less [-]Analysis of biofuel production in Ecuador from the perspective of the water-food-energy nexus Full text
2021
Terneus Páez, Carlos Francisco | Viteri Salazar, Oswaldo
Biofuels in Ecuador were born with the purpose of achieving an effective substitution of imports of petroleum derivatives. The objective of this research is to analyze the impact that biofuel production has on water, food, and energy, and its contribution to reducing the growing dependence on fossil fuels in the transportation sector in Ecuador. The analysis focuses on ethanol produced from sugar cane, which is used to produce Ecopaís gasoline. The methodology is composed of three parts. For the first part, Geographic Information Systems were used; for the second, the FAO Penman-Monteith method; and, finally, in the third, the energy consumption was obtained through secondary information. As a result, taking the year 2019 as a reference, ethanol became the ninth product with the largest amount of land suitable for agriculture, and the seventh with the most irrigated areas in a country that suffers from malnutrition. Countries with a tropical climate and highly dependent on imports of petroleum derivatives are tempted to implement policies to promote biofuels. However, due to the risks that this renewable fuel represents on food security, other options for reducing its energy dependence should be exhausted.
Show more [+] Less [-]Water-energy-food nexus of bioethanol in Pakistan: A life cycle approach evaluating footprint indicators and energy performance Full text
2019
Ghani, Hafiz Usman | Silalertruksa, Thapat | Gheewala, Shabbir H.
Water, energy, and food are the most basic and essential sectors for human welfare. However, an inextricable nexus and competition exists among these sectors. Production of molasses-based bioethanol is an interesting case resulting in the production of different food and energy materials while consuming water, energy, land, and other raw materials, throughout its life cycle. This paper briefly describes the nexus among water, energy, and food for bioethanol in Pakistan and its environmental implications. A life cycle approach has been used for evaluating four footprint categories including the carbon, ecological, water scarcity, and energy footprints along with an energy analysis of bioethanol. In comparison to conventional gasoline, bioethanol would have benefits in terms of lesser greenhouse gas emissions, better use of productive land, and superior energy performance, but, this will be at the expense of higher impacts in terms of water scarcity. Therefore, considering only a single aspect could result in inadvertent trade-offs that may go unnoticed. The quantified values would help accomplish integrated resource management along with their utilization within limits so as to be available for other uses. This study could help in developing strategies for optimal management of resources to maximize the synergies and minimize the possible trade-offs.
Show more [+] Less [-]